
1

9/14/2005 1

Time, Clocks, and the Ordering of
Events in a Distributed System

by L. Lamport

CS 5204 Operating Systems

Vladimir Glina

Fall 2005

9/14/2005 2

Overview
Key Points
Background
Partial Ordering
Extension for Total Ordering
Further Work
Key Points Reiteration
Evaluation
Discussion

9/14/2005 3

Key Points
1. The “happens before” relation on the system

event set
2. The events partial ordering on the base of the

relation
3. The distributed algorithm for logical clock

synchronization
4. The algorithm extension to the case of total

events ordering
5. The algorithm application for physical clock

synchronization
9/14/2005 4

Background: Distributed
System Features

Spatially separated processes
Processes communicate through messages
Message delays are considerable
Absence of the single timer leads to
synchronization problems

Example: totally ordered multicast

9/14/2005 5

Background: Synchronization
Approaches

Physical Clock Adjustment
All clocks show the same actual time
Problems:

Most important: backward time flow possible
Sophisticated time services (i.e. WWV); or
Reliance on a human operator

Logical Clock Adjustment
Consistency is important, not actual time

9/14/2005 6

Partial Ordering: Basics
A system is a set of processes Pi

A process is a set of events a, b, …
with total ordering
“Happened before” (→) relation:

(a ∈ P) && (b ∈ P) && (a comes before b) ⇒ a → b
(P1 sends a to P2) && (b is the receipt of P2 for a) ⇒ a → b
(a → b) && (b → c) ⇒ a → c

!(a → b) && !(b → a) ⇒ a and b are concurrent
!(a → a) ∀ a, so “happened before” is an irreflexive
partial ordering on the set of all the system events

2

9/14/2005 7

Partial Ordering: Example

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

a → f b → s c → m d || s i || q k || r

9/14/2005 8

Partial Ordering:
Synchronization

Logical clock: C〈a〉 = Cj〈a〉 if a ∈ Pj

Check condition: for ∀ a, b
a → b ⇒ C〈a〉 < C〈b〉 (not vice versa)
The check condition is satisfied if

C1. (a, b ∈ Pi) && (a comes before b)
⇒ Ci〈a〉 < Ci〈b〉

C2. (Pi sends a to Pj) && (b is the receipt of Pj to a)
⇒ Ci〈a〉 < Cj〈b〉

C never decreases!

9/14/2005 9

Partial Ordering:
Implementation Rules

IR1. Each Pi increments Ci between any two
successive events.

IR2.
a) If a is the sending of a message m by Pi, then m

contains a timestamp Tm = Cj 〈a〉; and
b) Upon receiving m, Pi sets Cj greater than or

equal to its present value and greater than Tm

9/14/2005 10

Partial Ordering: Unregulated
Clocks

12
6

18

0

24
30
36
42
48
54

1008060

16
8

24

0

32
40
48
56
64
72

20
10

30

0

40
50
60
70
80
90

A

B

D

C

9/14/2005 11

Partial Ordering: Corrected
Clocks

12
6

18

0

24
30
36
42
48
70

1008576

16
8

24

0

32
40
48
61
69
77

20
10

30

0

40
50
60
70
80
90

A

B

D

C

9/14/2005 12

Total Ordering: Definition

‹ is an arbitrary total ordering of processes
“Happen before” for total ordering():
(a ε Pi) && (b ε Pj) ⇒ a b iff

Ci〈a〉 < Cj 〈 b〉, or
Pi ‹ Pj

The total ordering depends on Ci and is not
unique

3

9/14/2005 13

Total Ordering:
Synchronization
1. Pi broadcasts the message Tm:Pi (request resource) and puts it on

its request queue.
2. When Pj receives Tm:Pi, it puts the message on its request queue

and sends the acknowledgment to Pi.
3. To release the resource, Pi removes Tm:Pi from its queue,

broadcasts a timestamped release message.
4. When Pj receives the release message, it removes Tm:Pi from its

queue.
5. Pi is granted the resource when

1) It has Tm:Pi in its queue ordered before any other request in the
queue by the relation ; and

2) Pi has received a message from every other process
timestamped later than Tm.

9/14/2005 14

Further Work: Vector
Timestamps

Lamport clock is:
Consistent: a → b ⇒ C〈a〉 < C〈b〉
Not: C〈a〉 < C〈b〉 ⇔ a → b (not strongly consistent)

Vector timestamps (VT) are strongly consistent
VT address potential causality

Allow to say if a happened before b, but not if a caused b
VT say how many events have occurred so far at all
processes
VT solve the totally-ordered multicasting problem

9/14/2005 15

Lack of Strong Consistency

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

1 2 3 5 7

1 3 4 5 6 7

1 2 3 4 5 6

[1]

[2] [3] [4]

[3]
[5]

[6]

d || s q || i k || r
5 < 6 4 > 3 5 = 5

9/14/2005 16

Vector Clocks (1)

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

[1 0 0] [2 0 0] [3 0 0] [4 3 0] [5 5 3]

[0 1 0] [2 2 0] [2 3 0] [2 4 3] [2 5 3] [3 6 5]

[0 0 1] [0 1 2] [0 1 3] [3 1 4] [3 1 5] [3 1 6]

[0 1 0]

[2 0 0] [3 0 0] [2 3 0]

[0 1 3]
[3 1 5]

[2 5 3]

a → f b → s c → m
[1 0 0] < [5 5 3] [2 0 0] < [3 1 6] [3 0 0] < [3 6 5]

9/14/2005 17

Vector Clocks (2)

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

[1 0 0] [2 0 0] [3 0 0] [4 3 0] [5 5 3]

[0 1 0] [2 2 0] [2 3 0] [2 4 3] [2 5 3] [3 6 5]

[0 0 1] [0 1 2] [0 1 3] [3 1 4] [3 1 5] [3 1 6]

[0 1 0]

[2 0 0] [3 0 0] [2 3 0]

[0 1 3]
[3 1 5]

[2 5 3]

d || s q || i k || r
[4 3 0] < [3 1 6] [3 1 4] < [2 2 0] [2 4 3] < [3 1 5]

9/14/2005 18

Key Points Reiteration
1. The “happens before” relation on the system

event set
2. The events partial ordering on the base of the

relation
3. The distributed algorithm for logical clock

synchronization
4. The algorithm extension to a case of total

events ordering
5. The algorithm application for physical clock

synchronization

4

9/14/2005 19

Evaluation

The logical clocks idea is very appealing
Virtually no revision on previous work
Nice to have more mathematically strict
extension on total ordering, if possible

9/14/2005 20

Discussion

Thank you!

Any questions?

