
Software Analysis Techniques for Detecting Data Race

[CS 5204 OS Course Project: Fall 2004]

Pilsung Kang
Department of Computer Science

Virginia Tech

kangp@vt.edu

ABSTRACT
Data races are a multithreading bug. They occur when at
least two concurrent threads access a shared variable, and
at least one access is a write, and the shared variable is
not explicitly protected from simultaneous accesses of the
threads. Data races are well-known to be hard to debug,
mainly because the effect of the conflicting accesses depends
on the interleaving of the thread executions. Hence there has
been much effort to detect data races through sophisticated
techniques of software analysis by automatically analyzing
the behavior of computer programs.

Software analysis techniques can be categorized according
to the time they are applied: static or dynamic. Static
techniques derive program information, such as invariants
or program correctness, before runtime from source code,
while dynamic techniques examine the behavior at runtime.
In this paper, we survey data race detection techniques in
each of these two approaches.

1. INTRODUCTION
Multithreading is very popular in today’s software. Typical
examples include high-concurrency Internet servers which
deal with simultaneous requests from large number of clients,
and GUI components that have to repaint itself, respond to
user input events, and perform spell-checking or play a song
at the same time.

However, multithreaded programming is error-prone and it
is very easy to make synchronization mistakes, which causes
data races. These data races occur when the programmer
fails to properly protect a shared variable from concurrent
accesses of multiple threads. Specifically, a data race occurs
when at least two concurrent threads access a shared vari-
able, and at least one access is a write, and the threads use
no explicit mechanism to prevent the accesses from being
simultaneous.

Data races are hard to debug. They are difficult to repro-
duce since the interleaving of thread execution depends on
the scheduler, and sometimes they just remain undetected
and change data structure invariants. This causes program
failure later in the future, which makes it hard to trace back.

There has been much effort to develop automatic tools for
detecting data races. The detection techniques are broadly
categorized according to the time they are applied to the
subject program: static and dynamic. Static techniques try
to extract the program information from source code before
runtime, while dynamic techniques examine the behavior at
runtime. In this paper, we survey the data race detection
techniques, along with the major design issues, in each of
these two approaches.

The remainder of this paper is organized as follows. In
Section 2 and 3, we describe two most commonly used ap-
proaches, happens-before relation and locksets, for detecting
data races. In Section 4, we present issues in race detection
techniques, including detection accuracy, overhead, scalabil-
ity, and usability. After that we present case studies for data
race detectors, Section 5 for static detectors and Section 6
for dynamic detectors. Finally, we summarize the survey in
Section 7.

2. HAPPENS-BEFORE RELATION
One of the common approaches on detecting data races
uses Lamport’s happens-before relation [8], which is a par-
tial order on all events of all threads in a system. This
happened-before relations was originally developed to estab-
lish causality between the events in a distributed system.
The happens-before relation, denoted by →, is defined as
follows.

• Definition: The relation → on the set of events of a
system is the smallest relation satisfying the following
three conditions: (1) If a and b are events in the same
process, and a comes before b, then a → b. (2) If a is
the sending of a message by one process and b is the
receipt of the same message by another process, then
a → b. (3) If a → b and b → c then a → c. Two
distinct events a and b are said to be concurrent if
a 6→ b and b 6→ a.

We can apply this definition to multithreaded programs as
follows. First, within a thread, order the events as they oc-



Thread 1 Thread 2

1 lock(mtx);
2 x = x + 1;
3 unlock(mtx);
4 lock(mtx);
5 x = x + 1;
6 unlock(mtx);

Figure 1: Ordering of events in multiple threads by
happens-before relation, given in [12]

curred. Now between threads, applying the condition (2)
in the above definition to multithreaded programs, consider
the unlocking function call in one thread in multithreading
as sending a message by one process, and also consider the
locking call in another thread as receiving the message in
another process. This is because unlocking by one thread
in multithreaded programs should happen before another
thread can grab the lock, as the message sending by one
process should causally happen before another process re-
ceives the message in distributed systems.

Now, based on this ordering of events in multithreading,
we can say that a potential race is reported if two or more
threads access a shared variable and the accesses are con-
current, which indicates that the variable is not properly
protected and can be accessed simultaneously.

Figure 1 is a simple example of one possible execution or-
dering of a multithreaded program, where two threads exe-
cute a common code segment. Inside thread 1 and 2, three
program statements are ordered such that they satisfy the
happens-before relation since they occur sequentially. And
between the two threads, we note that the locking of mtx
object by thread 2 follows the unlocking of mtx by thread 1.
As described above, this satisfies the happens-before relation
too because the lock can only be acquired after the previous
owner releases it. Hence, this program execution ordering is
valid in the view of race detectors based on happens-before
relation.

The key feature of the tools based on the happens-before
relation is that they basically report no false positives (ex-
plained later), since when it reports a data race, it means
that there is at least one alternative execution schedule where
the accesses happen simultaneously. Another advantage is
that it does not depend upon specific synchronization styles.
Since it uses timing relations for detecting races, it can han-
dle any synchronization primitives including locks, semaphores,
etc.

But historically this approach has been hard to implement
efficiently, because it requires per-thread information about
concurrent accesses to each shared-memory location. And
another serious drawback is that the effectiveness of the tools
is highly dependent on the interleaving produced by sched-
uler, which causes it to miss valid data races in some cases.
Figure 2 explains this with a simple example.

Thread 1 Thread 2

1 y = 1;
2 lock(mtx);
3 x = x + 1;
4 unlock(mtx);
5 lock(mtx);
6 x = x + 1;
7 unlock(mtx);
8 y = y + 1;

Figure 2: Missed data race on y by happens-before
relation, given in [12]

program 1ocks_held C(x)

{ } {mtx1 ,mtx2}

1 mutex mtx1 ,mtx2;
2 lock(mtx1); {mtx1}
3 x = x + 1; {mtx1}
4 unlock(mtx1); { }
5 lock(mtx2); {mtx2}
6 x = x + 1; { }
7 unlock(mtx2); { }

Figure 3: Lockset refinement, given in [12]

As with the example in Figure 1, the above program execu-
tion is a valid ordering with respect to the happens-before
relation. Each statement within each thread is sequentially
ordered and the locking of mtx by thread 2 happens after the
unlocking of the same synchronization primitive by thread 1.
However, there is a potential race with the shared variable
y between the two threads since it is not properly protected
by some locks. This potential race can be a real data race in
another program execution where the two statements that
access y occur concurrently.

3. LOCKSETS
A lock is a simple synchronization object used for mutual ex-
clusion of a shared variable. Locksets-based tools are based
on the following simple observation: A shared variable must
be protected at the time of access by a nonempty set of
locks, which should supposedly protect the variable. Hence
lockset-based tools maintain a set of locks, C(x), for each
shared variable x, and compares and refines C(x) with the
locks currently held by an accessing thread whenever it is ac-
cessed, and issues a warning if the thread does not own any
locks common with C(x). The example in Figure 3 shows
how lockset-based tools detect a data race.

In the example in Figure 3, the candidate set of locks C(x)
is inferred during the previous execution history, and ini-
tialized to {mtx1, mtx2}. After the program starts and a
thread t grabs the lock mtx1, the set locks held(t) changes
from an empty set to contain mtx1. And when t accesses
the shared variable x, C(x) is intersected with the current
locks held(t) and is refined to {mtx1}. Later, when t ac-
cesses x again with only mtx2, the current C(x) which con-
tain only mtx1 is intersected again with locks held(t) and it



becomes an empty set since these two sets have no common
locks. Therefore, the detector issues a warning.

The concept of locksets was first introduced in [2], with
the name lock covers technique. A dynamic detection ap-
proach was proposed using the lock cover technique along
with happens-before relation, but without any reports of a
serious implementation. The first race detector that used
locksets is Eraser [12].

A disadvantage of lockset-based tools is that they are not
very applicable to the programs that use other synchroniza-
tion primitives than locks, such as semaphores. This is be-
cause the concept of locksets is based on the ownership of
locks by thread, which makes it difficult for the lockset-based
tools to infer which variables are supposed to be protected
by those semaphores.

4. ISSUES IN DATA RACE DETECTION
In this section, we present important design issues in devel-
oping and evaluating data race detectors. Specifically, they
are analysis accuracy, overhead, scalability, and usability.
We describe accuracy first.

4.1 Analysis Accuracy
Accuracy is one of the most important aspects of data race
detection tools. Ideally, the tools must detect every real race
while not issuing a warning on valid codes. However most
of current tools, both static or dynamic, suffer from false
alarms of races, or do not effectively detect real races.

Tools based on happens-before relation theoretically do not
issue false alarms, but their detection accuracy depends on
the thread interleavings generated by schedulers. On the
other hand, locksets-based tools catch races irrespective of
actual thread interleavings, but these tools suffer from false
alarms because perfectly valid race-free code can violate the
lockset requirement. Hence effective suppression of false
alarms is an important issue for these tools.

Note that there is an interesting relation between happens-
before detection and locksets-based detection, which shows
that the races reported by a full happens-before detector
are a subset of the races reported by lockset-based detection
[11].

4.1.1 False Positives
False positives can be broadly divided into two categories
by their nature. One type of false alarms is those generated
when it is not a true data race but warnings are issued be-
cause detectors failed to get enough information about this.
For instance, Eraser reports alarms for private implementa-
tion of multiple reader, single writer locks, since these are
not part of pthread interface that Eraser implements.

The other type is benign races, which are true data races but
do not affect the program correctness. These races are usu-
ally intentional for performance reasons which try to avoid
synchronization overhead. Typical examples include double-
checked locking and lazy initialization. Figure 4 illustrates
an example of double-checked locking.

if (x == NULL) { // tests x without locks
lock(mutex);
if (x == NULL) {

set(x);
}
unlock(mutex);

}

Figure 4: Benign race in double-checked locking

Since the null test of the shared variable x is executed by
every thread, it would be costly for every thread to get the
lock just to see that x is not null in most cases. Hence, the
null test is doubled such that the first check is done without
costly locking operations and just passes the whole if -block
when x is not null. Otherwise, if x is null, the check is
done again seriously with a proper lock. The locksets-based
detectors will issue a warning for the first null check since
the check is done without protecting the shared variable with
proper locks.

4.1.2 False Negatives
False negatives are undetected races. Certainly, there is no
perfect detector and it is also usually hard to tell how many
real data races the detector failed to discover unless you have
much information about the test program. False negatives
are more serious for static detectors because any analysis
errors that cause false negatives just go silent. Therefore,
significant emphasis should be made on detecting such silent
failures [3].

Some tools based on either of happens-before relation or
lockset refinement are known to be vulnerable to the false
negatives caused by interleavings of scheduler [12, 13]. For
some tools, there is trade-off of what to effectively suppress
between false positives and negatives [12].

4.2 Analysis Overhead
Dynamic tools suffer from time and space overhead at run-
time. Especially, it is known that race detection is NP-hard
in general [10]. Therefore, how and where to focus detection
efforts on the given programs is the key to realizing efficient
detector.

4.2.1 Time Overhead
Dynamic tools typically instrument existing binary programs
and this incurs runtime overhead. They usually instrument
each load and store of shared memory locations, each call to
locking and unlocking calls, and each initialization and allo-
cation of memory. And this causes significant overhead for
dynamic tools. For instance, applications that used Eraser
were reported to slow down by a factor of 30 at maximum
[12].

Although static detector do not suffer from runtime over-
head, some tools which are geared for complete rigorous
detection consume much more time during analysis. For in-
stance, the proposed detector in [15] uses constraint solver
for model checking, of which the performance is yet to be
verified.



As today’s software becomes huge and complex, and as most
users want to quickly spot serious errors in their programs,
careful consideration between detection accuracy and per-
formance is needed.

4.2.2 Space Overhead
Space overhead is one of the hard challenges for detectors
based on the happens-before relation, since it requires to
maintain large amount of per-thread information, including
memory location, access time, and locks. For instance, a
data structure for read access in [2] needs to store N ∗ 2K

entries, where N is the number of threads and K is the
number of locks.

In contrast, lockset-based detectors enables simpler imple-
mentation, in that they need only information about set of
locks for thread and shared memory. So [11] proposes hy-
brid race detector which combines lockset-based detection
with a limited form of happens-before detection. Moreover,
another locksets-based detector reports significant improve-
ment in memory overhead, as well as runtime overhead, by
shifting the granularity level of race detection to objects [13].

Exhaustive static analysis needs huge amount of space. For
instance, the model based approach that uses constraint
solver [15] deals with large adjacency matrices and consumes
large amount of memory for the search space over the ma-
trices.

4.3 Analysis Scalability
Scalability is emerging as a new important issue in data race
detectors, and is getting more and more attention. This is
mainly due to the rapid growth of software programs, which
the race detectors have to deal with, in terms of both size
and complexity.

4.3.1 Number of Threads and Locks
Internet-scale server programs are highly concurrent with
lots of multiple threads and locks. The good detectors need
to maintain high detection accuracy, and also their per-
formance needs to slow down gracefully as the number of
threads and locks increases.

Lockset-based detection is reported to be insensitive to the
number of threads in terms of accuracy [12]. And the happens-
before approach will suffer from performance degradation as
the number of threads and locks increases, since it requires
more and more space for storing information as described
above.

4.3.2 Code Size
Today’s race detectors are faced with very large and complex
software programs. For instance, the test program used in
[3] had millions of lines of code. Therefore, efficiently scal-
able approaches for detecting races are needed accordingly.
[3] and [11] are nice examples with regard to this issue, in
that they effectively pick up and focus on potentially dan-
gerous or error-prone program points in large programs.

4.4 Detector Usability
After all, race detectors are a tool. Most users want easy-to-
use and fast, while effective, detectors. Since most detectors

need user input to capture program information and need
to constantly communicate with users for analysis, effective
detectors try to extract as much as information with as little
user input as possible.

4.4.1 Program Annotations
Program annotations are a way of communication between
detectors and test programs. Dynamic race detectors usu-
ally use program annotations to effectively suppress false
positives [12, 11].

Annotation is more than crucial for annotation-based tools.
A type-based race detector presented in [5] is based on pro-
grammer annotations to specify which lock should be held to
access a variable. Hence, effective use of annotations while
maintaining accuracy is a major challenge for them. For in-
stance, [5] measured an overhead of one annotation per 50
lines of code at a cost of one programmer hour per thousand
lines of code. In order to avoid the burden of manual anno-
tations, there has been work on automating the annotation
process [6].

4.4.2 User Input about Program Information
Some tools need the user to supply program information,
in order to capture the synchronization styles used in the
programs. For instance, in RacerX [3], the user supplies a
table specifying functions used to acquire and release locks
as well as those that disable and enable interrupts. In this
way, the user can get faster, more relevant, and more precise
results for his program.

4.4.3 User-friendly Race Detection
RacerX has the ability of sorting out potentially significant
races from trivial violations by using heuristics to identify
and rank likely races [3]. This allows the user to quickly
focus on dangerous points in large programs. The hybrid
method proposed in [11] improved usability by reporting
more information about detected races, which eases debug-
ging process.

5. STATIC TECHNIQUES: CASE STUDIES
Static techniques try to analyze the program to obtain infor-
mation that is valid for possible executions. And they can
provide significant advantages for large code bases. That is,
unlike a dynamic approach, static analysis does not require
executing code. It immediately finds errors in obscure code
paths that are difficult to reach at runtime. However, since
they occur offline, they can also do analysis impractical at
runtime. In other words, the extracted properties by static
analysis are only approximations of the properties that ac-
tually hold when the program runs. This imprecision means
that a static analysis may provide not so accurate informa-
tion to be useful.

However, with the wider use of strongly typed languages
and increased hardware capabilities, exhaustive and rigorous
static approaches are getting more attractive [7, 3].

5.1 RacerX
RacerX [3] is a static detector developed by Dawson Engler
at Stanford. It uses flow-sensitive, interprocedural analysis
to detect both race conditions and deadlocks. The system



is composed of the following five phases: Retargetting with
user input, control flow graph (CFG) extraction, running
checkers over the CFG, post-processing and ranking likely
races, and inspection.

User supplied information is substantial for effective opera-
tion of RacerX. This information is needed to capture the
synchronization styles used in the test cases, such as lock-
ing/unlocking functions or enabling/disabling interrupts. Also
users may provide annotator routines that mark whether
routines are single-threaded, multi-threaded, or interrupt
handlers. The annotation overhead is reported as modest:
less than 100 lines of annotations for millions lines of checked
code, which makes RacerX attractive for large programs.

Detection method is based on static application of lockset
analysis to the extracted control flow graph (CFG). Rac-
erX infers checking information such as which locks protect
which operations, which code contexts are multithreaded,
and which shared accesses are dangerous, by performing
depth-first search (DFS) over the CFG. During the DFS
traversal, RacerX adds and removes locks as needed, and
calls race checkers on each statement in the graph. For effi-
ciency, caching is used to remove redundant checking along
the DFS traversal.

One of the key features of RacerX is the use of heuristics to
sort out potentially significant races from trivial violations.
In order to identify and rank likely races, it uses scoring
functions to add or subtract points with regard to the fol-
lowing criteria: Is the lockset valid? Is code multithreaded?
Does X need to be protected? The author reports that this
ad hoc ranking does not seem overly sensitive to scoring,
which sounds not very convincing.

RacerX seems to be the first try to detect races against large
programs. They applied RacerX to three operating systems
code bases, including Linux, FreeBSD, and a commercial
system which they call system X. The performance mea-
surement shows quite promising results. First of all, it is
fast. They reported that it took only 2 to 14 minutes to
analyze 1.8 million line system. With respect to accuracy,
RacerX found 3 bugs for Linux and 7 bugs for System X,
although it generated false positives too.

5.2 Type-based Race Detector
This is a static annotation-based approach, based on a for-
mal type system that is capable of capturing many common
synchronization patterns [5]. The system is designed to pro-
vide a cost-effective way of static detection by minimizing
both the number of annotations required and the number of
false alarms produced.

Since this is annotation-based, it heavily relies on user-supplied
input. In addition, it relies on the programmer to aid the
verification process by providing a small number of addi-
tional type annotations, which can also be used as doc-
umentation of the locking strategies. The type system is
used to verify the lock-based synchronization discipline. It
associates a protecting lock with each field declaration, and
tracks the set of locks held at each program point.

The previous version of the type system supported only

Java classes with only internal synchronization [4]. They
extended it to support patterns for external locks for client-
side synchronization, and thread-local classes.

Each field declaration is annotated with guarded-by l, to
indicate that the field is protected by the lock expression l.
The type system then verifies that this lock is held whenever
the field is accessed or updated. Each method declaration
is annotated with requires l1, ..., ln, to indicate that the
locks l1,...,ln are held on method entry. And the type system
verifies that these locks are indeed held at each call-site of
the method, and checks that the method body is race-free
given this assumption.

In order to allow classes to be parameterized by external
locks, it uses ghost variables in class definitions. Thread-
local classes require no synchronization and should not need
to have locks guarding their fields. To indicate this informa-
tion, the thread-local modifier is used on class definitions.

The type system was implemented for the full Java language.
It was built on top of an existing Java front-end and required
5K lines of new code into existing code base. A nice feature
of the race condition checker, rccjava, is its ability to infer
default annotations for unannotated classes and fields by
using heuristics. Though the heuristics are not guaranteed
to produce the correct annotations, for about 90% for their
test programs, it is reported to save a significant amount of
time for annotating large programs.

They applied the checker to Java libraries including the
Hashtable and Vector classes, java.io, and other test cases
such as Ambit (the mobile object calculus), and WebL (the
language for automating web based tasks). The detector
reported race conditions in three of the five cases. But the
annotation overhead looks quite much: about one annota-
tion per 50 lines of code at a cost of one programmer hour
per thousand lines of code. This overhead makes it not very
practical for large, complex programs.

5.3 Memory-Model-Sensitive Race Detection
The detection technique proposed by Yang [15] is a for-
mal approach to detecting races by specifying the memory
model, which is a specification for thread semantics, and
converting this into input constraints for constraint logic
solver. Although current hardware technology has grown
very powerful and its cost has significantly improved, logic
solvers or theorem provers usually consume huge amount
of computation time and resources since the search space
covers all possible paths of program execution. Specifically,
rigorous semantic analysis such as race detection is known
to be NP-hard in general.

Therefore, the proposed method is not comparable to con-
ventional race detection techniques in terms of performance
and scalability. The authors aim to establish a sound basis
for rigorous and precise race detection, which can be a basis
for more efficient methods.

The basic idea is to specify threads’ memory access rules
into equivalent formal constraints and use them as an input
problem for an existing constraint solver to automate the
analysis. Then the challenge is how to accurately specify



the access rules, along with program semantics. In order
to tackle this issue, the authors target Java as it provides
built-in support for threads, and they extract the executable
specification of race conditions from the Java memory model
[1] which adopts a weaker form of sequential consistency
[9] and offers formalization of concurrent memory accesses
based on Lamport’s happens-before order.

The specification format is a predicate logic, but the opera-
tors and notations in the predicate logic are specified using
their own specification framework for memory models [14].
Also, they use a modestly extended predicate logic to ef-
fectively express a complex model, and try to construct a
complete specification by being fully explicit about all or-
dering properties such as totality, transitivity, and circuit-
freedom. Their model supports normal read/write, use of
local variables, computation operations, control branches,
and synchronization operations.

The constraint solving algorithm can be briefly described as
follows.

1. Derive a program execution, which is a set of
symbolic operation instances generated by program
instructions, ops from the program text in a
preprocessing phase

2. Suppose there are n ops. Then construct n by n
adjacency matrix M , where the element M(i, j)
indicates whether operations i and j should be
ordered

3. Go through each requirement in the specification and
impose the corresponding propositional constraints
with respect to the elements of M

4. If there is a binding of the free variables in ops such
that it satisfies the conjunction of all specification
requirements, then it is a data race

5. If not, no data race

The prototype was implemented straightforward using a con-
straint logic programming languages, Prolog. It was found
that providing domain information significantly reduced the
solving time and the search order among the constraints
also impacts the performance. The experimental results for
simple were reported, but it is unclear how to apply the
proposed model-based approach to large programs.

6. DYNAMIC TECHNIQUES: CASE STUD-
IES

Dynamic detectors instrument the program to extract pro-
gram information at runtime. The detection results are usu-
ally valid for the run in question, but make no guarantees
for other runs. Also, dynamic monitoring requires quite a
heavy computations, in that it consumes significant time
to run test cases. Furthermore, their dependence on inva-
sive instrumentation typically rule out their use on low-level
code such as OS kernels and device drivers, although these
are the very programs where concurrency errors are most
dangerous.

However, dynamic analyses have the advantage that detailed
information about a single execution is typically much eas-
ier to obtain than comparably detailed information that is
valid over all executions. By operating at runtime they only
visit feasible paths and have accurate views of the values of
variables and aliasing relations [7, 3].

6.1 Eraser
Eraser [12] is widely known as the first dynamic detection
tool that applied the lockset discipline, which imposes that
every shared variable must be protected by some lock at
program execution. Any access to a shared variable un-
protected by some lock is considered an error. Specifically,
Eraser keeps track of a set of all locks, locks held(t), held
by a thread t during each shared variable access. In the
meantime, it initializes a candidate set of locks, C(x), for
each variable x to hold all possible locks and updates C(x)
on each access by intersecting C(x) and locks held(t). If the
candidate set of locks becomes empty, this implies that the
variable is not shared by appropriate locks, and a warning
is issued.

But at first, this simple scheme was too strict and did not
work well. It failed to capture common programming prac-
tices that violate the discipline, but are not real data races.
Three cases were reported: initialization, read-shared data,
and reader-writer locks. For instance, it is very common
that shared variables are frequently initialized without hold-
ing a lock. Hence, the lockset algorithm had to be refined
to support these cases, and this was done mainly with the
design of state transition diagram for shared variables. The
following is the description of the state diagram.

1. Virgin : indicates a variable is newly allocated

2. Exclusive : enters this state once the variable is
accessed. As long as it is accessed by only one
thread, there is no change in state and C(x). This
takes care of the initialization issue

3. Shared : Enters from Exclusive state by a read access
from another thread. C(x) is updated in this state
but data races are not reported even if C(x) becomes
empty. This takes care of the read-shared data issue

4. Shared-Modified : Enters this state from Exclusive or
Shared state by a write access from another thread.
C(x) is updated in this state and races are reported if
C(x) becomes empty

Eraser was implemented at the binary level using code in-
strumentation into test applications on Digital Unix system.
Eraser instruments each load/store for maintaining C(x),
lock acquire/release for maintaining locks held(t), and calls
to the storage allocator for initializing C(x). It treats each
32bit word in heap or global data as a possible shared vari-
able. Every memory word has a shadow word for storing
lockset information and variable states.

Eraser was not optimized and reported to slow down the ap-
plications by a factor of 10 to 30, and half of the slowdown
was attributed to the procedure call overhead. It reported



to have found many race conditions in the tested server pro-
grams. It produced false alarms too, for instance, when
the memory locations are privately recycled without com-
municating with Eraser system. To effectively suppress this
kind of false alarms without harming the real warnings, the
authors devised appropriate program annotations, such as
EraserReuse(address, size) which resets the shadow mem-
ory to Virgin state to indicate that the memory has been
privately reused.

6.2 Hybrid Dynamic Detection
The detection technique proposed by O’Callahan and Choi
[11] is a hybrid of happens-before relation and locksets for
Java programs. It uses the locksets method for its perfor-
mance advantage, while trying to suppress false positives
by using happens-before relation method. Since combin-
ing these two different techniques would cause significantly
larger computational overhead than using only either one of
the two, optimization is more than necessary. As described
in Section 2, the overhead incurred by using happens-before
relation alone is quite large in itself.

Therefore, the first optimization technique by the hybrid de-
tection is the use of the limited form of the happens-before
detection, rather than fully supporting it. Specifically, it
keeps track of only start(), join(), wait(), and notify()
methods in Java programs, and the happens-before relations
are constructed on the events generated by instrumented
codes whenever any one of these methods is called. It ex-
cludes shared memory accesses and locking/unlocking pairs.
This limited form of happens-before relation is reported to
be very useful for suppressing false positives, while greatly
reducing the number of thread messages and the overhead
of maintaining vector clocks. And the check they perform
at runtime is just the conjunction of the locksets detection
check and this limited happens-before detection check.

Another optimization for efficient hybrid detection is to find
redundant events and remove them. Redundant events are
those that can be safely ignored without affecting the accu-
racy of race detector. For instance, suppose that there is a
set of recorded events, Em, for a specific memory location,
and also suppose that a new event e is generated. Then if
we can prove that for every future event ef that races with
e, ef must race with at least one of previous events in Em,
the event e is redundant.

Two heuristics for detecting redundant events are used in the
hybrid detection technique: Lockset-subset condition and
oversized lockset condition checks. The first one is based
on their vector clock implementation that only increments
a thread’s timestamp after it has sent a message. It checks
if the thread, access type, and timestamp of a new event e
matches those of one of previously recorded events. If there
is one such event ei, it also checks if ei’s lockset is a subset of
e’s lockset. If it is, the new event e is considered redundant.

The oversized lockset condition check is based on the ob-
servation that the number of locks held by a thread at any
one time is very small and it infers a priori bound on the
number of locks a thread can hold. It checks the number of
locksets intersected by a new event e’s locks with those of
a set of previous events. If the number exceeds the bound,

the new event e is redundant. The basic idea here is that
for a new event e to be nonredundant, a future event must
have a lockset which does not intersect e’s lockset but does
intersect the locksets of the prior events.

The system is implemented in two phases for performance
reasons. First, the detector runs in simple mode, where
only locksets detection is used to efficiently identify all Java
fields for possible races. Then, the user runs the detector
in detailed mode, which instruments accesses to only these
“race-prone” fields and performs the hybrid check. In fact,
the simple mode run is not necessary and the user can spec-
ify the fields of his interest for the detailed mode run. But
the two-phase mode to reduce the number of memory loca-
tions for possible races is recommended by the authors.

Experimental results with a variety of Java programs, in-
cluding web-application servers Resin (67K lines) and Tom-
cat (54K lines), reports bugs in many of the programs, as
well as false and benign races. The detection overhead re-
sults were acceptable in most cases, but were intolerable in
a few cases. For instance, the simple mode detection for ray-
tracer ran about 27 times slower. The results also showed
that two-phase mode run of the detector, where the detailed
mode run is supported by the simple mode run, is essential.
The test results where only the detailed mode run alone was
used showed unacceptable overhead.

6.3 Object Race Detection
The detection technique proposed by Praun and Gross [13]
is a specialized application of Eraser’s locksets analysis to
Java multithreaded programs at the level of objects, in the
hope of reducing the detection overhead by exploiting spe-
cific properties of object-oriented programs, such as data
encapsulation.

Consider an example case when all of the shared instance
variables are accessed through one instance method. Tra-
ditional detectors that employ low-level view on data races
will check every access to each of all shared variables, which
incurs considerable overhead. But note that these access
checks are equivalent to checking only the accesses to the in-
stance method, which is an only way of accessing the shared
variables. In order to take advantage of this observation,
the proposed method chooses an object as the granularity
of race checks. Since the accesses to an object’s instance
variables, which can be shared by and protected from con-
current threads, must be done through the object’s refer-
ence, it is reasonable to try to detect a conflict at the object
level.

Hence the authors extended the state transition model of
shared variables in Eraser system into similar model at ob-
ject level, which they call ownership model. The locksets
are associated with objects, rather than variables. Thus, the
detector keeps track of threads that have accessed a shared
object, and the accesses change object states according to
the model in the same way as in Eraser, and the locking
discipline is checked against shared objects at runtime.

But in treating objects as the unit of protection, there can be
more false alarms because the accesses to different instance
variables cannot be distinguished. The authors claim that



“This tradeoff can be justified if objects play a significant
role in the data space of a program.”

In order to further reduce runtime overhead, static analysis
is applied to identify references that only refer to thread-
local data, and only accesses through non-thread-local vari-
ables are instrumented for runtime checks.

The performance results are quite promising. The authors
reported the runtime overhead of 16–129% in time and less
than 25% in space for typical benchmark applications, com-
pared to the previous dynamic detectors which were re-
ported to slow down applications by a factor of 2–80 in time
with up to twice as much memory space.

7. SUMMARY
This paper has discussed static and dynamic techniques for
detecting data races. We described the happens-before rela-
tion and locksets method as the most common approaches
for data race detection. Happens-before relation exploits
causality among the events generated by multiple threads.
For example, if two events are not related by causality, these
two events are regarded as concurrent and will cause a data
race eventually. Locksets principle imposes that a thread
which tries to access a shared variable must hold some locks
which are supposed to protect the variable. If this principle
is violated, a locksets-based detector will issue a data race
warnings.

We presented four issues in data race detectors: accuracy,
overhead, scalability, and usability. Accuracy is the most
important goal in designing race detectors. Tools based on
happens-before relation theoretically do not generate false
alarms but their accuracy depends on thread interleaving.
On the other hand, locksets-based tools do not depend on
thread interleaving, but they suffer from false alarms. Dy-
namic tools that instrument existing binary program typ-
ically suffer from runtime overhead, hence some dynamic
tools perform static analysis to focus their detection efforts.
Space overhead is a major challenge for detectors based on
happens-before relation, because they have to maintain a
large amount of per-thread information.

Scalability and usability are getting more attention as soft-
ware becomes increasingly large and complex these days.
Many users want to find a small number of serious errors
quickly for their large programs, rather than having a large
number of trivial errors with slow tools. They want easy-
to-use tools. Hence, for example, annotation-based tools
try to capture the synchronization styles and the program
information with an effective use of user input.

We presented six different data race detectors, half of which
for static and another half for dynamic approach, as a case
study. We described each detector’s basic ideas, detection
methods, main features, and performance results. Each de-
tector has its own strengths and weaknesses in terms of the
four design issues described in Section 4. Some are good at
accuracy but bad at performance perspective. Some others
target at large programs while sacrificing accuracy. Some
tools need exact formalization of program information to
bootstrap accuracy while sacrificing performance.

Much work has been done for detecting data races in the
past. And at present, researchers are working for better de-
tectors. It will be nice if we can have a perfect detector
eventually. But in the meantime, we should carefully con-
sider different design principles in developing race detectors,
for today’s software is rapidly huge, complex, and domain-
specific.

8. REFERENCES
[1] JSR133: Java memory model and thread specification.

http://www.cs.umd.edu/˜pugh/java/memoryModel.

[2] A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In
Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 85–96, May 1991.

[3] D. Engler and K. Ashcraft. Racerx: Effective, static
detection of race conditions and deadlocks. In
Proceedings of the nineteenth ACM Symposium on
Operating Systems Principles, October 2003.

[4] C. Flanagan and M. Abadi. Object types against
races. In Proceedings of CONCUR, August 1999.

[5] C. Flanagan and S. N. Freund. Type-based race
detection for java. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 219–232, June
2000.

[6] C. Flanagan and K. Leino. Houdini, an annotation
assistant for esc/java. Symposium of Formal Methods
Europoe, pages 500–517, Mar. 2001.

[7] D. Jackson and M. Rinard. Software analysis: a
roadmap. In Proceedings of the conference on The
future of Software engineering, pages 133–145, June
2000.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. of the ACM,
21(7):558–565, 1978.

[9] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690–691,
September 1979.

[10] R. H. Netzer and B. P. Miller. What are race
conditions? some issues and formalizations. ACM
Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[11] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In Proceedings of the 9th ACM
SIGPLAN 2003 Symposium on Principles and
Practice of Parallel Programming, volume 38, pages
167–178, June 2003.

[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, November 1997.



[13] C. von Praun and T. R. Gross. Object race detection.
In Proceedings of the 16th ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages,
and Applications, pages 70–82, October 2001.

[14] Y. Yang, G. Gopalakrishnan, G. Lindstrom, , and
K. Slind. Nemos: A framework for axiomatic and
executable specifications of memory consistency
models. In the 18th International Parallel and
Distributed Processing Symposium (IPDPS), April
2004.

[15] Y. Yang, G. Gopalakrishnan, and G. Lindstrom.
Memory-model-sensitive data race analysis. To appear
in 6th International Conference on Formal
Engineering Methods (ICFEM’04), November 2004.


