NP and Computational Intractability

T. M. Murali

April 18, 23, 2013

Algorithm Design

- Patterns
- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
$O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O\left(n^{2}\right)$ edit distance. $O\left(n^{3}\right)$ maximum flow and minimum cuts.

Algorithm Design

- Patterns
- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
$O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O\left(n^{2}\right)$ edit distance. $O\left(n^{3}\right)$ maximum flow and minimum cuts.
- Reductions.
- Local search.
- Randomization.

Algorithm Design

- Patterns
- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
- NP-completeness.
- PSPACE-completeness.
- Undecidability.
$O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O\left(n^{2}\right)$ edit distance. $O\left(n^{3}\right)$ maximum flow and minimum cuts.

Computational Tractability

- When is an algorithm an efficient solution to a problem?

Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is computationally tractable if it has a polynomial-time algorithm.

Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time
Shortest path
Matching
Minimum cut
2-SAT
Planar four-colour
Bipartite vertex cover
Primality testing

Probably not
Longest path
3-D matching
Maximum cut 3-SAT

Planar three-colour
Vertex cover
Factoring

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by- n board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by- n board).
- However, classification is unclear for a very large number of discrete computational problems.

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by- n board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Computing the maximum flow in a network is at least as hard as finding the largest matching in a bipartite graph.
- Computing the minimum s-t cut in a network is at least as hard as finding the best segmentation of an image into foreground and background.
- Use the notion of reductions.
- Y is polynomial-time reducible to $X\left(Y \leq_{P} X\right)$

Polynomial-Time Reduction

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Computing the maximum flow in a network is at least as hard as finding the largest matching in a bipartite graph.
- Computing the minimum $s-t$ cut in a network is at least as hard as finding the best segmentation of an image into foreground and background.
- Use the notion of reductions.
- Y is polynomial-time reducible to $X\left(Y \leq_{p} X\right)$ if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem X.
- $Y \leq_{P} X$ implies that " X is at least as hard as Y."
- Such reductions are Cook reductions. Karp reductions allow only one call to the black box that solves X.

Usefulness of Reductions

- Claim: If $Y \leq_{p} X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.

Usefulness of Reductions

- Claim: If $Y \leq_{P} X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- Contrapositive: If $Y \leq_{p} X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
- Compute the largest flow.
- Find the closest pair of points.
- Find the schedule with the least completion time.

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
- Compute the largest flow.
- Find the closest pair of points.
- Find the schedule with the least completion time.
- Now, we will focus on decision versions of problems, e.g., is there a flow with value at least k, for a given value of k ?

Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set
INSTANCE: Undirected graph
G and an integer k
QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover
INSTANCE: Undirected graph G and an integer I
QUESTION: Does G contain a vertex cover of size $\leq I$?

Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set
INSTANCE: Undirected graph
G and an integer k
QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover
INSTANCE: Undirected graph G and an integer I
QUESTION: Does G contain a vertex cover of size $\leq I$?

- Demonstrate simple equivalence between these two problems.

Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set
INSTANCE: Undirected graph
G and an integer k
QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover
INSTANCE: Undirected graph G and an integer I
QUESTION: Does G contain a vertex cover of size $\leq I$?

- Demonstrate simple equivalence between these two problems.
- Claim: Independent Set \leq_{p} Vertex Cover and Vertex Cover $\leq p$ Independent Set.

Strategy for Proving Indep. Set \leq_{P} Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. From $G(V, E)$ and k, create an instance of Vertex Cover: an undirected graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ and an integer I.

- G^{\prime} related to G in some way.
- I can depend upon k and size of G.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ has a vertex cover of size $\leq I$.

Strategy for Proving Indep. Set \leq_{P} Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. From $G(V, E)$ and k, create an instance of Vertex Cover: an undirected graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ and an integer I.

- G^{\prime} related to G in some way.
- I can depend upon k and size of G.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ has a vertex cover of size $\leq I$.

- Transformation and proof must be correct for all possible graphs $G(V, E)$ and all possible values of k.
- Why is the proof an iff statement?

Strategy for Proving Indep. Set \leq_{P} Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. From $G(V, E)$ and k, create an instance of Vertex Cover: an undirected graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ and an integer I.

- G^{\prime} related to G in some way.
- I can depend upon k and size of G.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ has a vertex cover of size $\leq I$.

- Transformation and proof must be correct for all possible graphs $G(V, E)$ and all possible values of k.
- Why is the proof an iff statement? In the reduction, we are using black box for Vertex Cover to solve Independent Set.
(i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq I$, so that we know that the black box will find this vertex cover.
(ii) If the black box finds a vertex cover of size $\leq I$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.

Proof that Independent Set \leq_{P} Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. Let $|V|=n$.
3. Create an instance of Vertex Cover: same undirected graph $G(V, E)$ and integer $n-k$.

Proof that Independent Set \leq_{P} Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. Let $|V|=n$.
3. Create an instance of Vertex Cover: same undirected graph $G(V, E)$ and integer $n-k$.
4. Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n-k$.
Proof: S is an independent set in G iff $V-S$ is a vertex cover in G.

Proof that Independent Set \leq_{P} Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.
2. Let $|V|=n$.
3. Create an instance of Vertex Cover: same undirected graph $G(V, E)$ and integer $n-k$.
4. Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n-k$.
Proof: S is an independent set in G iff $V-S$ is a vertex cover in G.

- Same idea proves that Vertex Cover \leq_{p} Independent Set

Vertex Cover and Set Cover

- Independent Set is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- Vertex Cover is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

Set Cover
INSTANCE: A set U of n
elements, a collection
$S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U,
and an integer k.
QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U ?

Figure 8.2 An instance of the Set Cover Problem.

Vertex Cover \leq_{p} Set Cover

- Input to Vertex Cover: an undirected graph $G(V, E)$ and an integer k.
- Let $|V|=n$.
- Create an instance $\left\{U,\left\{S_{1}, S_{2}, \ldots S_{n}\right\}\right\}$ of Set Cover where

Vertex Cover \leq_{p} Set Cover

- Input to Vertex Cover: an undirected graph $G(V, E)$ and an integer k.
- Let $|V|=n$.
- Create an instance $\left\{U,\left\{S_{1}, S_{2}, \ldots S_{n}\right\}\right\}$ of Set Cover where
- $U=E$,
- for each vertex $i \in V$, create a set $S_{i} \subseteq U$ of the edges incident on i.

Vertex Cover \leq_{p} Set Cover

$$
U=\left\{\left(x_{1}, x 2\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, x_{7}\right),\left(x_{3}, x_{7}\right),\right.
$$

$$
\left.\left(x_{4}, x_{5}\right),\left(x_{5}, x_{6}\right),\left(x_{5}, x_{7}\right),\left(x_{6}, x_{7}\right)\right\}
$$

$$
\left(x_{6}\right) S_{1}=\left\{\left(x_{1}, x 2\right),\left(x_{1}, x_{4}\right)\right\}
$$

$$
S_{2}=\left\{\left(x_{1}, x 2\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, x_{7}\right)\right\}
$$

$S_{3}, S_{4}, S_{5}, S_{6}$, and S_{7} defined similarly.

- Input to Vertex Cover: an undirected graph $G(V, E)$ and an integer k.
- Let $|V|=n$.
- Create an instance $\left\{U,\left\{S_{1}, S_{2}, \ldots S_{n}\right\}\right\}$ of Set Cover where
- $U=E$,
- for each vertex $i \in V$, create a set $S_{i} \subseteq U$ of the edges incident on i.
- Claim: U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
- Proof strategy:

1. If $G(V, E)$ has a vertex cover of size at most k, then U can be covered with at most k subsets.
2. If U can be covered with at most k subsets, then $G(V, E)$ has a vertex cover of size at most k.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
- We are given a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n Boolean variables.
- Each variable can take the value 0 or 1 .
- A term is a variable x_{i} or its negation $\overline{x_{i}}$.
- A clause of length I is a disjunction of I distinct terms $t_{1} \vee t_{2} \vee \cdots t_{l}$.
- A truth assignment for X is a function $\nu: X \rightarrow\{0,1\}$.
- An assignment satisfies a clause C if it causes C to evaluate to 1 under the rules of Boolean logic.
- An assignment satisfies a collection of clauses $C_{1}, C_{2}, \ldots C_{k}$ if it causes $C_{1} \wedge C_{2} \wedge \cdots C_{k}$ to evaluate to 1 .
- ν is a satisfying assignment with respect to $C_{1}, C_{2}, \ldots C_{k}$.
- set of clauses $C_{1}, C_{2}, \ldots C_{k}$ is satisfiable.

SAT and 3-SAT

Satisfiability Problem (SAT)
INSTANCE: A set of clauses $C_{1}, C_{2}, \ldots C_{k}$ over a
set $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ of n variables.
QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)
INSTANCE: A set of clauses $C_{1}, C_{2}, \ldots C_{k}$, each of length three, over a set $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ of n variables.
QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)
INSTANCE: A set of clauses $C_{1}, C_{2}, \ldots C_{k}$, each of length three, over a set $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ of n variables.
QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make n independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable?

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable?

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=1, x_{2}=0$.

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=1, x_{2}=0$.
3. Is $C_{2} \wedge C_{3}$ satisfiable?

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=1, x_{2}=0$.
3. Is $C_{2} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=0, x_{2}=1$.

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=1, x_{2}=0$.
3. Is $C_{2} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=0, x_{2}=1$.
4. Is $C_{1} \wedge C_{2} \wedge C_{3}$ satisfiable?

Examples of 3-SAT

Example:

- $C_{1}=x_{1} \vee 0 \vee 0$
- $C_{2}=x_{2} \vee 0 \vee 0$
- $C_{3}=\overline{x_{1}} \vee \overline{x_{2}} \vee 0$

1. Is $C_{1} \wedge C_{2}$ satisfiable? Yes, by $x_{1}=1, x_{2}=1$.
2. Is $C_{1} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=1, x_{2}=0$.
3. Is $C_{2} \wedge C_{3}$ satisfiable? Yes, by $x_{1}=0, x_{2}=1$.
4. Is $C_{1} \wedge C_{2} \wedge C_{3}$ satisfiable? No.

3-SAT and Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- We want to prove 3 -SAT \leq_{p} Independent Set.

3-SAT and Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \quad \text {. Select } x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1 . \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- We want to prove 3 -SAT \leq_{p} Independent Set.
- Two ways to think about 3-SAT:

1. Make an independent $0 / 1$ decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.

3-SAT and Independent Set

$$
\begin{array}{ll}
C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} & \text { 1. Select } x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1 . \\
C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} & \text { 2. Choose one literal from each clause to evaluate to true. } \\
C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}} &
\end{array}
$$

- We want to prove 3 -SAT \leq_{P} Independent Set.
- Two ways to think about 3 -SAT:

1. Make an independent $0 / 1$ decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1 . Ensure that no two terms selected conflict, e.g., select $\overline{x_{2}}$ in C_{1} and x_{2} in C_{2}.

3-SAT and Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$

1. Select $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1$.
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$
2. Choose one literal from each clause to evaluate to true.

- Choices of selected literals imply $x_{1}=0, x_{2}=0, x_{4}=1$.
- We want to prove 3 -SAT \leq_{p} Independent Set.
- Two ways to think about 3 -SAT:

1. Make an independent $0 / 1$ decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1 . Ensure that no two terms selected conflict, e.g., select $\overline{x_{2}}$ in C_{1} and x_{2} in C_{2}.

Proving 3-SAT \leq_{P} Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph $G(V, E)$ with $3 k$ nodes.

Proving 3-SAT \leq_{p} Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph $G(V, E)$ with $3 k$ nodes.
- For each clause $C_{i}, 1 \leq i \leq k$, add a triangle of three nodes $v_{i 1}, v_{i 2}, v_{i 3}$ and three edges to G.
- Label each node $v_{i j}, 1 \leq j \leq 3$ with the j th term in C_{i}.

Proving 3-SAT \leq_{p} Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph $G(V, E)$ with $3 k$ nodes.
- For each clause $C_{i}, 1 \leq i \leq k$, add a triangle of three nodes $v_{i 1}, v_{i 2}, v_{i 3}$ and three edges to G.
- Label each node $v_{i j}, 1 \leq j \leq 3$ with the j th term in C_{i}.
- Add an edge between each pair of nodes whose labels correspond to terms that conflict.

Proving 3-SAT \leq_{p} Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Proving 3-SAT \leq_{p} Independent Set

$$
C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}
$$

$$
C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}
$$

$$
C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
$$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$:

Proving 3-SAT \leq_{p} Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1 . Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?

Proving 3-SAT \leq_{p} Independent Set

$C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4}$
$C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1 . Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?
- Independent set S of size $\geq k \rightarrow$ satisfiable assignment:

Proving 3-SAT \leq_{P} Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1 . Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?
- Independent set S of size $\geq k \rightarrow$ satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

Proving 3-SAT \leq_{P} Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1 . Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?
- Independent set S of size $\geq k \rightarrow$ satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
- For each variable x_{i}, only x_{i} or $\overline{x_{i}}$ is the label of a node in S. Why?

Proving 3-SAT \leq_{P} Independent Set

$$
\begin{aligned}
& C_{1}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \\
& C_{2}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{3}=\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}
\end{aligned}
$$

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1 . Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?
- Independent set S of size $\geq k \rightarrow$ satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
- For each variable x_{i}, only x_{i} or $\overline{x_{i}}$ is the label of a node in S. Why?
- If x_{i} is the label of a node in S, set $x_{i}=1$; else set $x_{i}=0$.
- Why is each clause satisfied?

Transitivity of Reductions

- Claim: If $\mathrm{Z} \leq_{p} \mathrm{Y}$ and $\mathrm{Y} \leq_{p} \mathrm{X}$, then $\mathrm{Z} \leq_{p} \mathrm{X}$.

Transitivity of Reductions

- Claim: If $\mathrm{Z} \leq_{p} \mathrm{Y}$ and $\mathrm{Y} \leq_{p} \mathrm{X}$, then $\mathrm{Z} \leq_{p} \mathrm{X}$.
- We have shown

3 -SAT \leq_{p} Independent $\operatorname{Set} \leq_{p}$ Vertex Cover \leq_{p} Set Cover

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k ?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k ?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between finding a solution and checking a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes",

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes", e.g., PRIMES $=\{10,11,101,111,1011, \ldots\}$.

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes", e.g., PRIMES $=\{10,11,101,111,1011, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in\{$ yes, no $\}$.
- A solves the problem X if for every string $s, A(s)=$ yes iff $s \in X$.

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes", e.g., PRIMES $=\{10,11,101,111,1011, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in\{$ yes, no $\}$.
- A solves the problem X if for every string $s, A(s)=$ yes iff $s \in X$.
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps,

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes", e.g., PRIMES $=\{10,11,101,111,1011, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in\{$ yes, no $\}$.
- A solves the problem X if for every string $s, A(s)=$ yes iff $s \in X$.
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps, e.g., there is an algorithm such that $p(|s|)=|s|^{8}$ for PRIMES (Agarwal, Kayal, Saxena, 2002).

Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Equate a decision problem X to the set of input strings for which the answer is "yes", e.g., PRIMES $=\{10,11,101,111,1011, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in\{$ yes, no $\}$.
- A solves the problem X if for every string $s, A(s)=$ yes iff $s \in X$.
- A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps, e.g., there is an algorithm such that $p(|s|)=|s|^{8}$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

Efficient Certification

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- Checker for Independent Set:

Efficient Certification

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- Checker for Independent Set: t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.

Efficient Certification

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- Checker for Independent Set: t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.
- An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=$ yes.

Efficient Certification

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- Checker for Independent Set: t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.
- An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=$ yes.

- Certifier's job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.
- Certifier does not care about how to find these proofs.

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3 -SAT $\in \mathcal{N P}$:

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{N P}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{N} \mathcal{P}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- Independent Set $\in \mathcal{N} \mathcal{P}$:

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{N} \mathcal{P}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- Independent Set $\in \mathcal{N} \mathcal{P}$: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{N} \mathcal{P}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- Independent Set $\in \mathcal{N} \mathcal{P}$: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{N P}$:

$\mathcal{N P}$

- $\mathcal{N P}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{N} \mathcal{P}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- Independent Set $\in \mathcal{N P}$: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{N} \mathcal{P}: t$ is a list of k sets from the collection; B checks if their union is U.

\mathcal{P} vs. $\mathcal{N} \mathcal{P}$

- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.

\mathcal{P} vs. $\mathcal{N} \mathcal{P}$

- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
- If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?

\mathcal{P} vs. $\mathcal{N} \mathcal{P}$

- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
- If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?
- Is $\mathcal{P}=\mathcal{N} \mathcal{P}$ or is $\mathcal{N P}-\mathcal{P} \neq \emptyset$?

\mathcal{P} vs. $\mathcal{N} \mathcal{P}$

- Claim: $\mathcal{P} \subseteq \mathcal{N P}$.
- If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?
- Is $\mathcal{P}=\mathcal{N} \mathcal{P}$ or is $\mathcal{N P}-\mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science. $\$ 1 \mathrm{M}$ prize offered by Clay Mathematics Institute.

$\mathcal{N} \mathcal{P}$-Complete and $\mathcal{N} \mathcal{P}$-Hard Problems

- What are the hardest problems in $\mathcal{N} \mathcal{P}$?

$\mathcal{N} \mathcal{P}$-Complete and $\mathcal{N} \mathcal{P}$-Hard Problems

- What are the hardest problems in $\mathcal{N P}$?

A problem X is $\mathcal{N P}$-Complete if
(i) $X \in \mathcal{N P}$ and
(ii) for every problem $Y \in \mathcal{N} \mathcal{P}$, $Y \leq_{P} X$.

A problem X is $\mathcal{N} \mathcal{P}$-Hard if
(i) for every problem $Y \in \mathcal{N P}$, $Y \leq_{P} X$.

$\mathcal{N} \mathcal{P}$-Complete and $\mathcal{N} \mathcal{P}$-Hard Problems

- What are the hardest problems in $\mathcal{N} \mathcal{P}$?

A problem X is $\mathcal{N} \mathcal{P}$-Complete if
(i) $X \in \mathcal{N P}$ and
(ii) for every problem $Y \in \mathcal{N} \mathcal{P}$, $Y \leq_{P} X$.

A problem X is $\mathcal{N} \mathcal{P}$-Hard if
(i) for every problem $Y \in \mathcal{N P}$, $Y \leq p X$.
NP-hard

- Claim: Suppose X is $\mathcal{N} \mathcal{P}$-Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P}=\mathcal{N} \mathcal{P}$.

$\mathcal{N} \mathcal{P}$-Complete and $\mathcal{N} \mathcal{P}$-Hard Problems

- What are the hardest problems in $\mathcal{N} \mathcal{P}$?

A problem X is $\mathcal{N P}$-Complete if
(i) $X \in \mathcal{N P}$ and
(ii) for every problem $Y \in \mathcal{N} \mathcal{P}$, $Y \leq_{p} X$.

A problem X is $\mathcal{N P}$-Hard if
(i) for every problem $Y \in \mathcal{N P}$, $Y \leq p X$.
NP -hard

- Claim: Suppose X is $\mathcal{N} \mathcal{P}$-Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- Corollary: If there is any problem in $\mathcal{N P}$ that cannot be solved in polynomial time, then no $\mathcal{N P}$-Complete problem can be solved in polynomial time.

$\mathcal{N} \mathcal{P}$-Complete and $\mathcal{N} \mathcal{P}$-Hard Problems

- What are the hardest problems in $\mathcal{N P}$?

A problem X is $\mathcal{N} \mathcal{P}$-Complete if \quad A problem X is $\mathcal{N} \mathcal{P}$-Hard if
(i) $X \in \mathcal{N P}$ and
(ii) for every problem $Y \in \mathcal{N} \mathcal{P}$, $Y \leq_{p} X$.
(i) for every problem $Y \in \mathcal{N P}$, $Y \leq p X$.

- Claim: Suppose X is $\mathcal{N} \mathcal{P}$-Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- Corollary: If there is any problem in $\mathcal{N P}$ that cannot be solved in polynomial time, then no $\mathcal{N} \mathcal{P}$-Complete problem can be solved in polynomial time.
- Are there any $\mathcal{N} \mathcal{P}$-Complete problems?

1. What if two problems X_{1} and X_{2} in $\mathcal{N P}$ but there is no problem $X \in \mathcal{N P}$ where $X_{1} \leq_{p} X$ and $X_{2} \leq_{p} X$.
2. Perhaps there is a sequence of problems $X_{1}, X_{2}, X_{3}, \ldots$ in $\mathcal{N P}$, each strictly harder than the previous one.

Circuit Satisfiability

- Cook-Levin Theorem: Circuit Satisfiability is $\mathcal{N P}$-Complete.

Circuit Satisfiability

- Cook-Levin Theorem: Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete.
- A circuit K is a labelled, directed acyclic graph such that

1. the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator \wedge, \vee, or \neg.
3. a single node with no outgoing edges represents the output of K.

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Circuit Satisfiability

- Cook-Levin Theorem: Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete.
- A circuit K is a labelled, directed acyclic graph such that

1. the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator \wedge, \vee, or \neg.
3. a single node with no outgoing edges represents the output of K.

Circuit Satisfiability

INSTANCE: A circuit K. QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1 ?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{P}$ Circuit Satisfiability.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{p}$ Circuit Satisfiability.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{p}$ Circuit Satisfiability.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- To show $X \leq_{p}$ Circuit Satisfiability, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit SATISFIABILITY.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{p}$ Circuit Satisfiability.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- To show $X \leq_{p}$ Circuit Satisfiability, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit SATISFIABILITY.
- What do we know about X ?

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{p}$ Circuit Satisfiability.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- To show $X \leq_{p}$ Circuit Satisfiability, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit SATISFIABILITY.
- What do we know about X ? It has an efficient certifier $B(\cdot, \cdot)$.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- Take an arbitrary problem $X \in \mathcal{N P}$ and show that $X \leq_{p}$ Circuit Satisfiability.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- To show $X \leq_{P}$ Circuit Satisfiability, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit SATISFIABILITY.
- What do we know about X ? It has an efficient certifier $B(\cdot, \cdot)$.
- To determine whether $s \in X$, we ask "Is there a string t of length $p(n)$ such that $B(s, t)=$ yes?"

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- To determine whether $s \in X$, we ask "Is there a string t of length $p(|s|)$ such that $B(s, t)=$ yes?"

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- To determine whether $s \in X$, we ask "Is there a string t of length $p(|s|)$ such that $B(s, t)=$ yes?"
- View $B(\cdot, \cdot)$ as an algorithm on $n+p(n)$ bits.
- Convert B to a polynomial-sized circuit K with $n+p(n)$ sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining $p(n)$ sources labelled with variables representing the bits of t.

Proving Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete

- To determine whether $s \in X$, we ask "Is there a string t of length $p(|s|)$ such that $B(s, t)=$ yes?"
- View $B(\cdot, \cdot)$ as an algorithm on $n+p(n)$ bits.
- Convert B to a polynomial-sized circuit K with $n+p(n)$ sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining $p(n)$ sources labelled with variables representing the bits of t.

- $s \in X$ iff there is an assignment of the input bits of K that makes K satisfiable.

Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?

Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).

Example of Transformation to Circuit Satisfiability

- Suppose G contains three nodes u, v, and w with v connected to u and w.

Example of Transformation to Circuit Satisfiability

- Suppose G contains three nodes u, v, and w with v connected to u and w.

Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.

Asymmetry of Certification

- Definition of efficient certification and $\mathcal{N P}$ is fundamentally asymmetric:
- An input string s is a "yes" instance iff there exists a short string t such that $B(s, t)=$ yes.
- An input string s is a "no" instance iff for all short strings $t, B(s, t)=$ no.

Asymmetry of Certification

- Definition of efficient certification and $\mathcal{N P}$ is fundamentally asymmetric:
- An input string s is a "yes" instance iff there exists a short string t such that $B(s, t)=$ yes.
- An input string s is a "no" instance iff for all short strings $t, B(s, t)=$ no. The definition of $\mathcal{N P}$ does not guarantee a short proof for "no" instances.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$,

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N P}$?

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co-NP iff \bar{X} belongs to $\mathcal{N P}$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co-NP iff \bar{X} belongs to $\mathcal{N P}$.

- Open problem: Is $\mathcal{N P}=\operatorname{co}-\mathcal{N} \mathcal{P}$?

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co-N \mathcal{P} iff \bar{X} belongs to $\mathcal{N P}$.

- Open problem: Is $\mathcal{N P}=\operatorname{co}-\mathcal{N P}$?
- Claim: If $\mathcal{N P} \neq \operatorname{co}-\mathcal{N} \mathcal{P}$ then $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co}-\mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co}-\mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap$ co- $\mathcal{N} \mathcal{P}$ have a good characterisation.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap$ co- $\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and co- $\mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap$ co- $\mathcal{N P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and co- $\mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap$ co- $\mathcal{N P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.

- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and co- $\mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap$ co- $\mathcal{N P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.

- Claim: $\mathcal{P} \subseteq \mathcal{N P} \cap \operatorname{co}-\mathcal{N P}$.
- Open problem: Is $\mathcal{P}=\mathcal{N} \mathcal{P} \cap$ co- $\mathcal{N} \mathcal{P}$?

