Divide and Conquer Algorithms

T. M. Murali

February 19, 2013

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - Partition problem into two equal sub-problems of size n/2.
 - Solve each part recursively.
 - Combine the two solutions in O(n) time.
 - Resulting running time is $O(n \log n)$.

Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \ldots, x_n$ of integers.

SOLUTION: A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \leq y_{i+1}$, for all $1 \leq i < n$.

• Mergesort is a divide-and-conquer algorithm for sorting.

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

Maintain a *current* pointer for each list. Initialise each pointer to the front of the list. While both lists are nonempty:

> Let a_i and b_j be the elements pointed to by the *current* pointers. Append the smaller of the two to the output list. Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

• Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

Maintain a *current* pointer for each list. Initialise each pointer to the front of the list. While both lists are nonempty:

Let a_i and b_j be the elements pointed to by the *current* pointers. Append the smaller of the two to the output list.

Advance the current pointer in the list that the smaller element belonged to.

EndWhile

Append the rest of the non-empty list to the output.

• Running time of this algorithm is O(k + l).

- 1. Partition L into two lists A and B of size |n/2| and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort *B*.
- 4. Merge the sorted lists A and B into a single sorted list.

- 1. Partition L into two lists A and B of size |n/2| and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

► Assume *n* is a power of 2.

- 1. Partition L into two lists A and B of size |n/2| and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

► Assume *n* is a power of 2.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

 $T(2) \leq c$

- 1. Partition L into two lists A and B of size |n/2| and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

► Assume *n* is a power of 2.

 $T(n) \le 2T(n/2) + cn, n > 2$ $T(2) \le c$

- Three basic ways of solving this recurrence relation:
 - 1. "Unroll" the recurrence (somewhat informal method).
 - 2. Guess a solution and substitute into recurrence to check.
 - 3. Guess solution in O() form and substitute into recurrence to determine the

Unrolling the recurrence

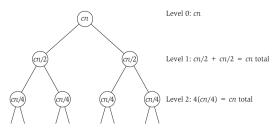


Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Unrolling the recurrence

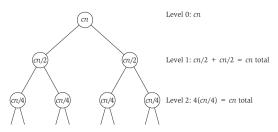


Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

- Recursion tree has log n levels.
- Total work done at each level is cn.
- Running time of the algorithm is cn log n.
- Use this method only to get an idea of the solution.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- ► Use induction to check if the solution satisfies the recurrence relation.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

Т

$$\begin{aligned} f(n) &\leq 2T\left(\frac{n}{2}\right) + cn \\ &\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis} \\ &= cn\log\left(\frac{n}{2}\right) + cn \\ &= cn\log n - cn + cn \\ &= cn\log n. \end{aligned}$$

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

Τ

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$

- Why doesn't an attempt to prove $T(n) \le kn$, for some k > 0 work?
- Why is $T(n) \leq kn^2$ a "loose" bound?

Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.

Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $k \ge c$ will work.

Proof for All Values of *n*

- ▶ We assumed *n* is a power of 2.
- How do we generalise the proof?

Proof for All Values of *n*

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- ► Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$

Proof for All Values of *n*

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- ▶ Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m) = O(n \log n)$, because $m \leq 2n$.

Other Recurrence Relations

- ▶ Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct cases: q = 1 and q > 2.
- ▶ Divide into two sub-problems of size n/2 and merge in $O(n^2)$ time.

T(n) = qT(n/2) + cn, q = 1



Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

T(n) = qT(n/2) + cn, q = 1

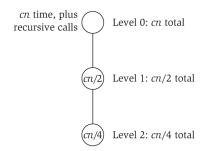


Figure 5.3 Unrolling the recurrence $T(n) \le T(n/2) + O(n)$.

- ► Each invocation reduces the problem size by a factor of 2 ⇒ there are log n levels in the recursion tree.
- At level *i* of the tree, the problem size is $n/2^i$ and the work done is $cn/2^i$.
- Therefore, the total work done is

$$\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).$$

T(n) = qT(n/2) + cn, q > 2

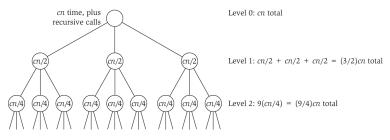


Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

T(n) = qT(n/2) + cn, q > 2

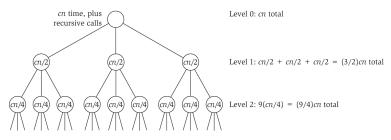


Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log n levels in the recursion tree.
- At level *i* of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level *i* is $q^i cn/2^i$.
- Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log n} q^i \frac{cn}{2^i} \leq c$$

T(n) = qT(n/2) + cn, q > 2

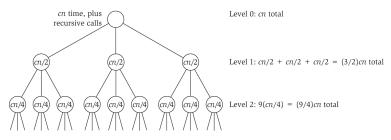


Figure 5.2 Unrolling the recurrence $T(n) \le 3T(n/2) + O(n)$.

- There are log n levels in the recursion tree.
- At level *i* of the tree, there are q^i sub-problems, each of size $n/2^i$.
- The total work done at level *i* is $q^i cn/2^i$.
- Therefore, the total work done is

$$T(n) \leq \sum_{i=0}^{i=\log n} q^i \frac{cn}{2^i} \leq O(n^{\log_2 q}).$$

 $T(n) = 2T(n/2) + cn^2$

► Total work done is

$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \leq$$

 $T(n) = 2T(n/2) + cn^2$

► Total work done is

$$\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i}\right)^2 \leq O(n^2).$$