
Interval Scheduling Interval Partitioning Minimising Lateness

Greedy Algorithms

T. M. Murali

January 31, 2013

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Algorithm Design

I Start discussion of different ways of designing algorithms.

I Greedy algorithms, divide and conquer, dynamic programming.

I Discuss principles that can solve a variety of problem types.

I Design an algorithm, prove its correctness, analyse its complexity.

I Greedy algorithms: make the current best choice.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Algorithm Design

I Start discussion of different ways of designing algorithms.

I Greedy algorithms, divide and conquer, dynamic programming.

I Discuss principles that can solve a variety of problem types.

I Design an algorithm, prove its correctness, analyse its complexity.

I Greedy algorithms: make the current best choice.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling

Interval Scheduling

INSTANCE: Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.

I This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.

I For any input set of jobs, algorithm must provably compute the largest set of
compatible jobs.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

I Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

I Key question: in what order should we process the jobs?

Earliest start time Increasing order of start time s(i).
Earliest finish time Increasing order of finish time f (i).
Shortest interval Increasing order of length f (i)− s(i).
Fewest conflicts Increasing order of the number of conflicting jobs. How fast

can you compute the number of conflicting jobs for each job?

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

I Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

I Key question: in what order should we process the jobs?

Earliest start time Increasing order of start time s(i).
Earliest finish time Increasing order of finish time f (i).
Shortest interval Increasing order of length f (i)− s(i).
Fewest conflicts Increasing order of the number of conflicting jobs. How fast

can you compute the number of conflicting jobs for each job?

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Greedy Ideas that Do Not Work

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

I Schedule jobs in order of earliest finish time (EFT).

I Claim: A is a compatible set of requests. Proof follows by construction, i.e.,
the algorithm computes a compatible set of requests.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

I Schedule jobs in order of earliest finish time (EFT).

I Claim: A is a compatible set of requests.

Proof follows by construction, i.e.,
the algorithm computes a compatible set of requests.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

I Schedule jobs in order of earliest finish time (EFT).

I Claim: A is a compatible set of requests. Proof follows by construction, i.e.,
the algorithm computes a compatible set of requests.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

I We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

I Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

I What does “best” mean?
I This idea is too generic. It can be applied even to algorithms that we know do

not work correctly.

I Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

I What does “better” mean?
I How do we measure progress of the algorithm?

I Basic idea of proof:
I We can sort intervals in any solution in increasing order of their finishing time.
I Finishing time of interval r selected by A ≥ finishing time of interval r selected

by every other algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

I We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

I Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

I What does “best” mean?
I This idea is too generic. It can be applied even to algorithms that we know do

not work correctly.

I Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

I What does “better” mean?
I How do we measure progress of the algorithm?

I Basic idea of proof:
I We can sort intervals in any solution in increasing order of their finishing time.
I Finishing time of interval r selected by A ≥ finishing time of interval r selected

by every other algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

I We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

I Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

I What does “best” mean?
I This idea is too generic. It can be applied even to algorithms that we know do

not work correctly.

I Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

I What does “better” mean?
I How do we measure progress of the algorithm?

I Basic idea of proof:
I We can sort intervals in any solution in increasing order of their finishing time.
I Finishing time of interval r selected by A ≥ finishing time of interval r selected

by every other algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

I We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

I Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

I What does “best” mean?
I This idea is too generic. It can be applied even to algorithms that we know do

not work correctly.

I Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

I What does “better” mean?
I How do we measure progress of the algorithm?

I Basic idea of proof:
I We can sort intervals in any solution in increasing order of their finishing time.
I Finishing time of interval r selected by A ≥ finishing time of interval r selected

by every other algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

I We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

I Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

I What does “best” mean?
I This idea is too generic. It can be applied even to algorithms that we know do

not work correctly.

I Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

I What does “better” mean?
I How do we measure progress of the algorithm?

I Basic idea of proof:
I We can sort intervals in any solution in increasing order of their finishing time.
I Finishing time of interval r selected by A ≥ finishing time of interval r selected

by every other algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

I Let O be an optimal set of requests. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of requests in A in order.

I Let j1, j2, . . . , jm be the set of requests in O in order, m ≥ k.

I Claim: For all indices r ≤ k , f (ir) ≤ f (jr).

Prove by induction on r .

I Claim: m = k.

I Claim: The greedy algorithm returns an optimal set A.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

I Let O be an optimal set of requests. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of requests in A in order.

I Let j1, j2, . . . , jm be the set of requests in O in order, m ≥ k.

I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

I Claim: m = k.

I Claim: The greedy algorithm returns an optimal set A.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

I Let O be an optimal set of requests. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of requests in A in order.

I Let j1, j2, . . . , jm be the set of requests in O in order, m ≥ k.

I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

I Claim: m = k.

I Claim: The greedy algorithm returns an optimal set A.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

I Let O be an optimal set of requests. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of requests in A in order.

I Let j1, j2, . . . , jm be the set of requests in O in order, m ≥ k.

I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

I Claim: m = k.

I Claim: The greedy algorithm returns an optimal set A.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

I Let O be an optimal set of requests. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of requests in A in order.

I Let j1, j2, . . . , jm be the set of requests in O in order, m ≥ k.

I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

I Claim: m = k.

I Claim: The greedy algorithm returns an optimal set A.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Implementing the EFT Algorithm

1. Reorder jobs so that they are in increasing order of finish time.

2. Store starting time of jobs in an array S .

3. Always select first interval. Let finish time be f .

4. Iterate over S to find the first index i such that S [i] ≥ f .

I Running time is O(n log n), dominated by sorting.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Implementing the EFT Algorithm

1. Reorder jobs so that they are in increasing order of finish time.

2. Store starting time of jobs in an array S .

3. Always select first interval. Let finish time be f .

4. Iterate over S to find the first index i such that S [i] ≥ f .

I Running time is O(n log n), dominated by sorting.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning

Interval Partitioning

INSTANCE: Set {(s(i), f (i)), 1 ≤ i ≤ n} of start and finish times of n
jobs.

SOLUTION: A partition of the jobs into k sets, where each set of jobs is
mutually compatible, and k is minimised.

I This problem models the situation where you a set of fixed jobs, and you
want to schedule all jobs using as few resources as possible.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

I The depth of a set of intervals is the maximum number of intervals that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.

I Is it possible to compute k efficiently? Is k = depth?

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

I The depth of a set of intervals is the maximum number of intervals that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.

I Is it possible to compute k efficiently? Is k = depth?

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

I The depth of a set of intervals is the maximum number of intervals that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.

I Is it possible to compute k efficiently? Is k = depth?

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals

I How efficiently can we compute the depth of a set of intervals?

1. Sort the start times and finish times of the jobs into a single list L.

2. d ← 0.

3. For i ranging from 1 to 2n

3.1 If Li is a start time, increment d by 1.
3.2 If Li is a finish time, decrement d by 1.

4. Return the largest value of d computed in the loop.

I Algorithm runs in O(n log n) time.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals

I How efficiently can we compute the depth of a set of intervals?

1. Sort the start times and finish times of the jobs into a single list L.

2. d ← 0.

3. For i ranging from 1 to 2n

3.1 If Li is a start time, increment d by 1.
3.2 If Li is a finish time, decrement d by 1.

4. Return the largest value of d computed in the loop.

I Algorithm runs in O(n log n) time.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals

I How efficiently can we compute the depth of a set of intervals?

1. Sort the start times and finish times of the jobs into a single list L.

2. d ← 0.

3. For i ranging from 1 to 2n

3.1 If Li is a start time, increment d by 1.
3.2 If Li is a finish time, decrement d by 1.

4. Return the largest value of d computed in the loop.

I Algorithm runs in O(n log n) time.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm

I Compute the depth d of the intervals.

I Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

I Claim: The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm

I Compute the depth d of the intervals.

I Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

I Claim: The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm

I Compute the depth d of the intervals.

I Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

I Claim: The greedy algorithm is optimal.

I The running time of the algorithm is O(n log n).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm

I Compute the depth d of the intervals.

I Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

I Claim: The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

I Study different model: job i has a length t(i) and a deadline d(i).

I We want to schedule all jobs on one resource.

I Our goal is to assign a starting time s(i) to each job such that each job is
delayed as little as possible.

I A job i is delayed if f (i) > d(i); the lateness of the job is max(0, f (i)− d(i)).

I The lateness of a schedule is maxi
(

max
(
0, f (i)− d(i)

))
.

Minimise Lateness

INSTANCE: Set {(t(i), d(i)), 1 ≤ i ≤ n} of lengths and deadlines of n
jobs.

SOLUTION: Set {s(i), 1 ≤ i ≤ n} of start times such that
maxi

(
max

(
0, s(i) + t(i)− d(i)

))
is as small as possible.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

I Study different model: job i has a length t(i) and a deadline d(i).

I We want to schedule all jobs on one resource.

I Our goal is to assign a starting time s(i) to each job such that each job is
delayed as little as possible.

I A job i is delayed if f (i) > d(i); the lateness of the job is max(0, f (i)− d(i)).

I The lateness of a schedule is maxi
(

max
(
0, f (i)− d(i)

))
.

Minimise Lateness

INSTANCE: Set {(t(i), d(i)), 1 ≤ i ≤ n} of lengths and deadlines of n
jobs.

SOLUTION: Set {s(i), 1 ≤ i ≤ n} of start times such that
maxi

(
max

(
0, s(i) + t(i)− d(i)

))
is as small as possible.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

I Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(i).
Shortest slack time Increasing order of d(i)− t(i).
Earliest deadline Increasing order of deadline d(i).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

I Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(i).
Shortest slack time Increasing order of d(i)− t(i).
Earliest deadline Increasing order of deadline d(i).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Minimising Lateness: Earliest Deadline First

I Proof of correctness is more complex.

I We will use an exchange argument: gradually modify the optimal schedule O
till it is the same as the schedule A computed by the algorithm.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule.

Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

I A schedule has an inversion if a job i with deadline d(i) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

I Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

I Claim 2: All schedules with no inversions and no idle time have the same
lateness.

I Claim 3: There is an optimal schedule with no idle time.

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j , we get
a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum lateness of O.

I It is enough to prove the last item, since after
(
n
2

)
swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j , we get
a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum lateness of O.

I It is enough to prove the last item, since after
(
n
2

)
swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j , we get
a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum lateness of O.

I It is enough to prove the last item, since after
(
n
2

)
swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j , we get
a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum lateness of O.

I It is enough to prove the last item, since after
(
n
2

)
swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

I Claim 4: There is an optimal schedule with no inversions and no idle time.

I Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j , we get
a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum lateness of O.

I It is enough to prove the last item, since after
(
n
2

)
swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs

I In O, assume each request r is scheduled for the interval [s(r), f (r)] and has
lateness l(r). For O ′, let the lateness of request r be l ′(r).

I Claim: l ′(k) = l(k), for all k 6= i , j .

I Claim: l ′(j) ≤ l(j).

I Claim: l ′(i) ≤ l(j) because l ′(i) = f (j)− di ≤ f (j)− dj = l(j).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs

I In O, assume each request r is scheduled for the interval [s(r), f (r)] and has
lateness l(r). For O ′, let the lateness of request r be l ′(r).

I Claim: l ′(k) = l(k), for all k 6= i , j .

I Claim: l ′(j) ≤ l(j).

I Claim: l ′(i) ≤ l(j) because l ′(i) = f (j)− di ≤ f (j)− dj = l(j).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs

I In O, assume each request r is scheduled for the interval [s(r), f (r)] and has
lateness l(r). For O ′, let the lateness of request r be l ′(r).

I Claim: l ′(k) = l(k), for all k 6= i , j .

I Claim: l ′(j) ≤ l(j).

I Claim: l ′(i) ≤ l(j) because l ′(i) = f (j)− di ≤ f (j)− dj = l(j).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs

I In O, assume each request r is scheduled for the interval [s(r), f (r)] and has
lateness l(r). For O ′, let the lateness of request r be l ′(r).

I Claim: l ′(k) = l(k), for all k 6= i , j .

I Claim: l ′(j) ≤ l(j).

I Claim: l ′(i) ≤ l(j)

because l ′(i) = f (j)− di ≤ f (j)− dj = l(j).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs

I In O, assume each request r is scheduled for the interval [s(r), f (r)] and has
lateness l(r). For O ′, let the lateness of request r be l ′(r).

I Claim: l ′(k) = l(k), for all k 6= i , j .

I Claim: l ′(j) ≤ l(j).

I Claim: l ′(i) ≤ l(j) because l ′(i) = f (j)− di ≤ f (j)− dj = l(j).

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

I Wrong: start with algorithm’s schedule A and argue that A cannot be
improved by swapping two jobs.

I Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that the algorithm
produces without increasing the completion time.

I Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the
completion times of all intervening jobs changes.

I Correct: Show that an inversion exists between two neighbouring jobs and
swap them.

I Wrong: Proof by contradiction, e.g., consider a particular optimal schedule
O, assume it is not equal to A, and arrive at a contradiction. Problem is that
there may be many optimal schedules.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

I Wrong: start with algorithm’s schedule A and argue that A cannot be
improved by swapping two jobs.

I Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that the algorithm
produces without increasing the completion time.

I Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the
completion times of all intervening jobs changes.

I Correct: Show that an inversion exists between two neighbouring jobs and
swap them.

I Wrong: Proof by contradiction, e.g., consider a particular optimal schedule
O, assume it is not equal to A, and arrive at a contradiction. Problem is that
there may be many optimal schedules.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

I Wrong: start with algorithm’s schedule A and argue that A cannot be
improved by swapping two jobs.

I Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that the algorithm
produces without increasing the completion time.

I Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the
completion times of all intervening jobs changes.

I Correct: Show that an inversion exists between two neighbouring jobs and
swap them.

I Wrong: Proof by contradiction, e.g., consider a particular optimal schedule
O, assume it is not equal to A, and arrive at a contradiction. Problem is that
there may be many optimal schedules.

T. M. Murali January 31, 2013 Greedy Algorithms

Interval Scheduling Interval Partitioning Minimising Lateness

Summary

I Greedy algorithms make local decisions.

I Three analysis strategies:

Greedy algorithm stays ahead Show that after each step in the greedy
algorithm, its solution is at least as good as that produced by
any other algorithm.

Structural bound First, discover a property that must be satisfied by every
possible solution. Then show that the (greedy) algorithm
produces a solution with this property.

Exchange argument Transform the optimal solution in steps into the solution
by the greedy algorithm without worsening the quality of the
optimal solution.

T. M. Murali January 31, 2013 Greedy Algorithms

	Interval Scheduling
	Interval Partitioning
	Minimising Lateness

