Analysis of Algorithms

T. M. Murali

January 24, 2013

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
- Goal: Develop algorithms that provably run quickly and use low amounts of space.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size $=$ number of elements in the input.

Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size $=$ number of elements in the input. Values in the input do not matter.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.

Polynomial Time

- Brute force algorithm: Check every possible solution.

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
- Try all possible n ! permutations of the numbers.
- For each permutation, check if it is sorted.

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
- Try all possible n ! permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n n!$. Unacceptable in practice!

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
- Try all possible n ! permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
- Try all possible n ! permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a polynomial running time if there exist constants $c>0$ and $d>0$ such that on every input of size n, the running time of the algorithm is bounded by $c n^{d}$ steps.

Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
- Try all possible n ! permutations of the numbers.
- For each permutation, check if it is sorted.
- Running time is $n n!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a polynomial running time if there exist constants $c>0$ and $d>0$ such that on every input of size n, the running time of the algorithm is bounded by $c n^{d}$ steps.

Definition

An algorithm is efficient if it has a polynomial running time.

Upper and Lower Bounds

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \leq c g(n)$.
Definition
Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \geq c g(n)$.
Definition
Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

Upper and Lower Bounds

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \leq c g(n)$.
Definition
Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have $f(n) \geq c g(n)$.
Definition
Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- In these definitions, c is a constant independent of n.
- Abuse of notation: say $g(n)=O(f(n)), g(n)=\Omega(f(n)), g(n)=\Theta(f(n))$.

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Additivity

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$.
- Similar statements hold for lower and tight bounds.

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Additivity

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_{i}=O(h), 1 \leq i \leq k$,

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Additivity

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_{i}=O(h), 1 \leq i \leq k$, then $f_{1}+f_{2}+\ldots+f_{k}=O(h)$.

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Additivity

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_{i}=O(h), 1 \leq i \leq k$, then $f_{1}+f_{2}+\ldots+f_{k}=O(h)$.
- If $f=O(g)$, then $f+g=$

Properties of Asymptotic Growth Rates

Transitivity

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$.

Additivity

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_{i}=O(h), 1 \leq i \leq k$, then $f_{1}+f_{2}+\ldots+f_{k}=O(h)$.
- If $f=O(g)$, then $f+g=\Theta(g)$.

Examples

- $f(n)=p n^{2}+q n+r$ is

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?
- $f(n)=\sum_{0 \leq i \leq d} a_{i} n^{i}=$

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?
- $f(n)=\sum_{0 \leq i \leq d} a_{i} n^{i}=O\left(n^{d}\right)$, if $d>0$ is an integer constant and $a_{d}>0$. Definition of polynomial time

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?
- $f(n)=\sum_{0 \leq i \leq d} a_{i} n^{i}=O\left(n^{d}\right)$, if $d>0$ is an integer constant and $a_{d}>0$. Definition of polynomial time
- Is an algorithm with running time $O\left(n^{1.59}\right)$ a polynomial-time algorithm?

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?
- $f(n)=\sum_{0 \leq i \leq d} a_{i} n^{i}=O\left(n^{d}\right)$, if $d>0$ is an integer constant and $a_{d}>0$. Definition of polynomial time
- Is an algorithm with running time $O\left(n^{1.59}\right)$ a polynomial-time algorithm?
- $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any pair of constants $a, b>1$.
- For every $x>0, \log n=O\left(n^{x}\right)$.

Examples

- $f(n)=p n^{2}+q n+r$ is $\theta\left(n^{2}\right)$. Can ignore lower order terms.
- Is $f(n)=p n^{2}+q n+r=O\left(n^{3}\right)$?
- $f(n)=\sum_{0 \leq i \leq d} a_{i} n^{i}=O\left(n^{d}\right)$, if $d>0$ is an integer constant and $a_{d}>0$. Definition of polynomial time
- Is an algorithm with running time $O\left(n^{1.59}\right)$ a polynomial-time algorithm?
- $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any pair of constants $a, b>1$.
- For every $x>0, \log n=O\left(n^{x}\right)$.
- For every $r>1$ and every $d>0, n^{d}=O\left(r^{n}\right)$.

Linear Time

- Running time is at most a constant factor times the size of the input.

Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.

Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time.

Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.

$O(n \log n)$ Time

- Any algorithm where the costliest step is sorting.

Quadratic Time

- Enumerate all pairs of elements.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.

Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: can solve this problem in $O(n \log n)$ time later in the semester.

$O\left(n^{k}\right)$ Time

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

$O\left(n^{k}\right)$ Time

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.

$O\left(n^{k}\right)$ Time

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
- Running time is

$O\left(n^{k}\right)$ Time

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
- Running time is $O\left(k^{2}\binom{n}{k}\right)=O\left(n^{k}\right)$.

Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?

Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.

Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
-What is the running time?

Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time? $O\left(n^{2} 2^{n}\right)$.

