Introduction to CS 5114

T. M. Murali

January 22, 2013

Course Information

- Instructor
- T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
- Chreston Miller, chmille3@vt.edu
- Office Hours: to be announced

Course Information

- Instructor
- T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
- Chreston Miller, chmille3@vt.edu
- Office Hours: to be announced
- Class meeting time
- TR 2pm-3:15pm, Torgerson 1030, NVC 113

Course Information

- Instructor
- T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
- Chreston Miller, chmille3@vt.edu
- Office Hours: to be announced
- Class meeting time
- TR 2pm-3:15pm, Torgerson 1030, NVC 113
- Keeping in Touch
- Course web site http://courses.cs.vt.edu/~cs5114/spring2013, updated regularly through the semester
- Scholar web site: grades and homework/exam solutions
- Scholar mailing list: announcements

Required Course Textbook

- Algorithm Design
- Jon Kleinberg and Éva Tardos
- Addison-Wesley
- 2006
- ISBN: 0-321-29535-8

Course Goals

- Learn methods and principles to construct algorithms.
- Learn techniques to analyze algorithms mathematically for correctness and efficiency (e.g., running time and space used).
- Course roughly follows the topics suggested in textbook
- Measures of algorithm complexity
- Greedy algorithms
- Divide and conquer
- Dynamic programming
- Network flow problems
- NP-completeness
- Coping with intractability
- Approximation algorithms
- Randomized algorithms

Required Readings

- Reading assignment available on the website.
- Read before class.

Lecture Slides

- Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important.

Lecture Slides

- Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important. Lecture in class contains significant and substantial additions to material on the slides.

Homeworks

- Posted on the web site \approx one week before due date.
- Prepare solutions digitally but hand in hard-copy.

Homeworks

- Posted on the web site \approx one week before due date.
- Prepare solutions digitally but hand in hard-copy.
- Solution preparation recommended in $A_{E} T_{E X}$.

Examinations

- Take-home midterm.
- Take-home final (comprehensive).
- Prepare digital solutions (recommend LATEX).

Grades

- Homeworks: $\approx 8,60 \%$ of the grade.
- Take-home midterm: 15% of the grade.
- Take-home final: 25% of the grade.

What is an Algorithm?

What is an Algorithm?

Chamber's A set of prescribed computational procedures for solving a problem; a step-by-step method for solving a problem.
Knuth, TAOCP An algorithm is a finite, definite, effective procedure, with some input and some output.

Origin of the word "Algorithm"

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.

Origin of the word "Algorithm"

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
2. From Al Gore, the former U.S. vice-president who invented the internet.

Origin of the word "Algorithm"

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
2. From Al Gore, the former U.S. vice-president who invented the internet.
3. From the Greek algos (meaning "pain," also a root of "analgesic") and rythmos (meaning "flow," also a root of "rhythm").

Origin of the word "Algorithm"

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
2. From Al Gore, the former U.S. vice-president who invented the internet.
3. From the Greek algos (meaning "pain," also a root of "analgesic") and rythmos (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 5114 homeworks." - former CS 5114 student.

Origin of the word "Algorithm"

1. From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa. He wrote "Kitab al-jabr wa'l-muqabala," which evolved into today's high school algebra text.
2. From Al Gore, the former U.S. vice-president who invented the internet.
3. From the Greek algos (meaning "pain," also a root of "analgesic") and rythmos (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 5114 homeworks." - former CS 5114 student.

Problem Example

Find Minimum
INSTANCE: Nonempty list $x_{1}, x_{2}, \ldots, x_{n}$ of integers. SOLUTION: Pair $\left(i, x_{i}\right)$ such that $x_{i}=\min \left\{x_{j} \mid 1 \leq j \leq n\right\}$.

Algorithm Example

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
1
$i \leftarrow 1$
$2 \quad$ for $j \leftarrow 2$ to n
3
4 do if $x_{j}<x_{i}$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

Running Time of Algorithm

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
1
$i \leftarrow 1$
for $j \leftarrow 2$ to n do if $x_{j}<x_{i}$ then $i \leftarrow j$
5 return (i, x_{i})

Running Time of Algorithm

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
$2 \quad$ for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
4 then $i \leftarrow j$
5 return (i, x_{i})

- At most $2 n-1$ assignments and $n-1$ comparisons.

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
$2 \quad$ for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
then $i \leftarrow j$
return $\left(i, x_{i}\right)$

- Proof by contradiction:

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by contradiction: Suppose algorithm returns (k, x_{k}) but there exists $1 \leq I \leq n$ such that $x_{I}<x_{k}$ and x_{I} is the smallest element.

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by contradiction: Suppose algorithm returns (k, x_{k}) but there exists $1 \leq I \leq n$ such that $x_{I}<x_{k}$ and x_{I} is the smallest element.
- Is $k<l$?

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by contradiction: Suppose algorithm returns (k, x_{k}) but there exists $1 \leq I \leq n$ such that $x_{I}<x_{k}$ and x_{l} is the smallest element.
- Is $k<I$? No. Since the algorithm returns $\left(k, x_{k}\right), x_{k} \leq x_{j}$, for all $k<j \leq n$. Therefore $l<k$.

Correctness of Algorithm: Proof 1

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

1	$i \leftarrow 1$
2	for $j \leftarrow 2$ to n
3	do if $x_{j}<x_{i}$
4	then $i \leftarrow j$
5	return $\left(i, x_{i}\right)$

- Proof by contradiction: Suppose algorithm returns (k, x_{k}) but there exists $1 \leq I \leq n$ such that $x_{I}<x_{k}$ and x_{l} is the smallest element.
- Is $k<I$? No. Since the algorithm returns $\left(k, x_{k}\right), x_{k} \leq x_{j}$, for all $k<j \leq n$. Therefore $l<k$.
- What does the algorithm do when $j=I$? It must set i to l, since we have been told that x_{l} is the smallest element.
- What does the algorithm do when $j=k$ (which happens after $j=l$)? Since $x_{l}<x_{k}$, the value of i does not change.
- Therefore, the algorithm does not return $\left(k, x_{k}\right)$ yielding a contradiction.

Correctness of Algorithm: Proof 2

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by induction: What is true at the end of each iteration?

Correctness of Algorithm: Proof 2

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by induction: What is true at the end of each iteration?
- Claim: $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq j\right\}$, for all $1 \leq j \leq n$.
- Claim is true

Correctness of Algorithm: Proof 2

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$1 \quad i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_{j}<x_{i}$
$4 \quad$ then $i \leftarrow j$
5 return $\left(i, x_{i}\right)$

- Proof by induction: What is true at the end of each iteration?
- Claim: $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq j\right\}$, for all $1 \leq j \leq n$.
- Claim is true \Rightarrow algorithm is correct (set $j=n$).

Correctness of Algorithm: Proof 2

Find-Minimum $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

```
1 i
2 for j}\leftarrow2\mathrm{ to }
3 do if }\mp@subsup{x}{j}{}<\mp@subsup{x}{i}{
4 then i
5 return (i, xi)
```

- Proof by induction: What is true at the end of each iteration?
- Claim: $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq j\right\}$, for all $1 \leq j \leq n$.
- Claim is true \Rightarrow algorithm is correct (set $j=n$).
- Proof of the claim involves three steps.

1. Base case: $j=1$ (before loop). $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq 1\right\}$ is trivially true.
2. Inductive hypothesis: Assume $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq j\right\}$.
3. Inductive step: Prove $x_{i}=\min \left\{x_{m} \mid 1 \leq m \leq j+1\right\}$.

- In the loop, i is set to be $j+1$ if and only if $x_{j+1}<x_{i}$.
- Therefore, x_{i} is the smallest of $x_{1}, x_{2}, \ldots, x_{j+1}$ after the loop ends.

Format of Proof by Induction

- Goal: prove some proposition $P(n)$ is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.

Format of Proof by Induction

- Goal: prove some proposition $P(n)$ is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that $P(1)$ or $P(2)$ (or $P($ small number)) is true.
- Inductive hypothesis: assume $P(k-1)$ is true.
- Inductive step: prove that $P(k-1) \Rightarrow P(k)$.

Format of Proof by Induction

- Goal: prove some proposition $P(n)$ is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that $P(1)$ or $P(2)$ (or $P($ small number)) is true.
- Inductive hypothesis: assume $P(k-1)$ is true.
- Inductive step: prove that $P(k-1) \Rightarrow P(k)$.
- Why does this strategy work?

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=
$$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof by Induction:
 - Base case:

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis:

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.
- Inductive step: Assuming $P(k)=k(k+1) / 2$, prove that $P(k+1)=(k+1)(k+2) / 2$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.
- Inductive step: Assuming $P(k)=k(k+1) / 2$, prove that $P(k+1)=(k+1)(k+2) / 2$

$$
P(k+1)=\sum_{i=1}^{k+1} i=
$$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.
- Inductive step: Assuming $P(k)=k(k+1) / 2$, prove that $P(k+1)=(k+1)(k+2) / 2$

$$
P(k+1)=\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)
$$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.
- Inductive step: Assuming $P(k)=k(k+1) / 2$, prove that $P(k+1)=(k+1)(k+2) / 2$

$$
P(k+1)=\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=\frac{k(k+1)}{2}+(k+1)
$$

Sum of first n natural numbers

$$
P(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

Proof by Induction:

- Base case: $k=1: ~ P(1)=1=1 \times 2 / 2$.
- Inductive hypothesis: assume $P(k)=k(k+1) / 2$.
- Inductive step: Assuming $P(k)=k(k+1) / 2$, prove that $P(k+1)=(k+1)(k+2) / 2$

$$
\begin{aligned}
P(k+1) & =\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=\frac{k(k+1)}{2}+(k+1) \\
& =(k+1)\left(\frac{k}{2}+2\right)=\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq
$$

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n .
$$

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n .
$$

- Basis: $k=1: P(1)=1 \leq 1+\log _{2} 1$.

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n
$$

- Basis: $k=1: ~ P(1)=1 \leq 1+\log _{2} 1$.
- Inductive hypothesis: Assume $P(k) \leq 1+\log _{2} k$. Prove $P(k+1) \leq 1+\log _{2}(k+1)$.

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n
$$

- Basis: $k=1: ~ P(1)=1 \leq 1+\log _{2} 1$.
- Inductive hypothesis: Assume $P(k) \leq 1+\log _{2} k$. Prove $P(k+1) \leq 1+\log _{2}(k+1)$.
- Inductive step: $P(k+1)=$

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n
$$

- Basis: $k=1: ~ P(1)=1 \leq 1+\log _{2} 1$.
- Inductive hypothesis: Assume $P(k) \leq 1+\log _{2} k$. Prove $P(k+1) \leq 1+\log _{2}(k+1)$.
- Inductive step: $P(k+1)=P\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)+1$.

Recurrence Relation

Given

$$
P(n)= \begin{cases}P\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

prove that

$$
P(n) \leq 1+\log _{2} n
$$

- Basis: $k=1: ~ P(1)=1 \leq 1+\log _{2} 1$.
- Inductive hypothesis: Assume $P(k) \leq 1+\log _{2} k$. Prove $P(k+1) \leq 1+\log _{2}(k+1)$.
- Inductive step: $P(k+1)=P\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)+1$.
- We are stuck since inductive hypothesis does not say anything about $P\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)$.

Strong Induction

- Use strong induction: In the inductive hypothesis, assume that $P(i)$ is true for all $i \leq k$.

$$
P(k+1)=P\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)+1
$$

Strong Induction

- Use strong induction: In the inductive hypothesis, assume that $P(i)$ is true for all $i \leq k$.

$$
\begin{aligned}
P(k+1) & =P\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)+1 \\
& \leq 1+\log _{2}\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)+1 \\
& \leq 1+\log _{2}(k+1)-1+1=1+\log _{2}(k+1)
\end{aligned}
$$

