Introduction to CS 5114

T. M. Murali

January 22, 2013

T. M. Murali

January 22, 2013

Introduction to CS 5114

Course Information

Instructor

- ► T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- ▶ Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
 - Chreston Miller, chmille3@vt.edu
 - Office Hours: to be announced

Course Information

Instructor

- ► T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
 - Chreston Miller, chmille3@vt.edu
 - Office Hours: to be announced
- Class meeting time
 - ► TR 2pm-3:15pm, Torgerson 1030, NVC 113

Course Information

Instructor

- ► T. M. Murali, 2160B Torgerson, 231-8534, murali@cs.vt.edu
- ▶ Office Hours: 9:30am-11:30am Thursdays and by appointment
- Teaching assistant
 - Chreston Miller, chmille3@vt.edu
 - Office Hours: to be announced
- Class meeting time
 - TR 2pm-3:15pm, Torgerson 1030, NVC 113
- Keeping in Touch
 - Course web site http://courses.cs.vt.edu/~cs5114/spring2013, updated regularly through the semester
 - Scholar web site: grades and homework/exam solutions
 - Scholar mailing list: announcements

Required Course Textbook

- Algorithm Design
- Jon Kleinberg and Éva Tardos
- Addison-Wesley
- ▶ 2006
- ISBN: 0-321-29535-8

Course Goals

- Learn methods and principles to construct algorithms.
- Learn techniques to analyze algorithms mathematically for correctness and efficiency (e.g., running time and space used).
- Course roughly follows the topics suggested in textbook
 - Measures of algorithm complexity
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Network flow problems
 - NP-completeness
 - Coping with intractability
 - Approximation algorithms
 - Randomized algorithms

Required Readings

- ► Reading assignment available on the website.
- Read before class.

Lecture Slides

- ► Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important.

Lecture Slides

- ► Will be available on class web site.
- Usually posted just before class.
- Class attendance is extremely important. Lecture in class contains significant and substantial additions to material on the slides.

Homeworks

- \blacktriangleright Posted on the web site pprox one week before due date.
- Prepare solutions digitally but hand in hard-copy.

Homeworks

- \blacktriangleright Posted on the web site pprox one week before due date.
- Prepare solutions digitally but hand in hard-copy.
 - ► Solution preparation recommended in △TEX.

Examinations

- Take-home midterm.
- ► Take-home final (comprehensive).
- ► Prepare digital solutions (recommend \PTEX).

Grades

- Homeworks: \approx 8, 60% of the grade.
- ► Take-home midterm: 15% of the grade.
- ► Take-home final: 25% of the grade.

What is an Algorithm?

What is an Algorithm?

Chamber's A set of prescribed computational procedures for solving a problem; a step-by-step method for solving a problem. Knuth, TAOCP An algorithm is a finite, definite, effective procedure, with some input and some output.

1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- 3. From the Greek *algos* (meaning "pain," also a root of "analgesic") and *rythmos* (meaning "flow," also a root of "rhythm").

- 1. From the Arabic *al-Khwarizmi*, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- 3. From the Greek *algos* (meaning "pain," also a root of "analgesic") and *rythmos* (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 5114 homeworks." – former CS 5114 student.

- From the Arabic al-Khwarizmi, a native of Khwarazm, a name for the 9th century mathematician, Abu Ja'far Mohammed ben Musa. He wrote "Kitab al-jabr wa'l-muqabala," which evolved into today's high school algebra text.
- 2. From Al Gore, the former U.S. vice-president who invented the internet.
- 3. From the Greek *algos* (meaning "pain," also a root of "analgesic") and *rythmos* (meaning "flow," also a root of "rhythm"). "Pain flowed through my body whenever I worked on CS 5114 homeworks." – former CS 5114 student.

Problem Example

Find Minimum **INSTANCE:** Nonempty list $x_1, x_2, ..., x_n$ of integers. **SOLUTION:** Pair (i, x_i) such that $x_i = \min\{x_j \mid 1 \le j \le n\}$.

Algorithm Example

Find-Minimum
$$(x_1, x_2, \ldots, x_n)$$
1 $i \leftarrow 1$ 2for $j \leftarrow 2$ to n 3do if $x_j < x_i$ 4then $i \leftarrow j$ 5return (i, x_i)

Running Time of Algorithm

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Running Time of Algorithm

Find-Minimum
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

• At most 2n - 1 assignments and n - 1 comparisons.

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by contradiction:

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l is the smallest element.

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l is the smallest element.
 Is k < l?

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l is the smallest element.
- Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists 1 ≤ l ≤ n such that x_l < x_k and x_l is the smallest element.
- Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.</p>
- ▶ What does the algorithm do when j = l? It must set i to l, since we have been told that x_l is the smallest element.
- What does the algorithm do when j = k (which happens after j = l)? Since x_l < x_k, the value of i does not change.
- ► Therefore, the algorithm does not return (k, x_k) yielding a contradiction.

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Proof by induction: What is true at the end of each iteration?

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- > Proof by induction: What is true at the end of each iteration?
- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- > Proof by induction: What is true at the end of each iteration?
- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true \Rightarrow algorithm is correct (set j = n).

```
Find-Minimum(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- > Proof by induction: What is true at the end of each iteration?
- Claim: $x_i = \min\{x_m \mid 1 \le m \le j\}$, for all $1 \le j \le n$.
- Claim is true \Rightarrow algorithm is correct (set j = n).
- Proof of the claim involves three steps.
- 1. Base case: j = 1 (before loop). $x_i = \min\{x_m \mid 1 \le m \le 1\}$ is trivially true.
- 2. Inductive hypothesis: Assume $x_i = \min\{x_m \mid 1 \le m \le j\}$.
- 3. Inductive step: Prove $x_i = \min\{x_m \mid 1 \le m \le j+1\}$.
 - ▶ In the loop, *i* is set to be j + 1 if and only if $x_{j+1} < x_i$.
 - ► Therefore, x_i is the smallest of x₁, x₂,..., x_{j+1} after the loop ends.

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that P(1) or P(2) (or P(small number)) is true.
- Inductive hypothesis: assume P(k-1) is true.
- Inductive step: prove that $P(k-1) \Rightarrow P(k)$.

Format of Proof by Induction

- Goal: prove some proposition P(n) is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that P(1) or P(2) (or P(small number)) is true.
- Inductive hypothesis: assume P(k-1) is true.
- Inductive step: prove that $P(k-1) \Rightarrow P(k)$.
- Why does this strategy work?

$$P(n) = \sum_{i=1}^{n} i =$$

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

► Base case:

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

• Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis:

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.
- ▶ Inductive step: Assuming P(k) = k(k+1)/2, prove that P(k+1) = (k+1)(k+2)/2

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.
- ▶ Inductive step: Assuming P(k) = k(k+1)/2, prove that P(k+1) = (k+1)(k+2)/2

$$P(k+1) = \sum_{i=1}^{k+1} i =$$

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.
- ▶ Inductive step: Assuming P(k) = k(k+1)/2, prove that P(k+1) = (k+1)(k+2)/2

$$P(k+1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.
- ▶ Inductive step: Assuming P(k) = k(k+1)/2, prove that P(k+1) = (k+1)(k+2)/2

$$P(k+1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Base case: k = 1: $P(1) = 1 = 1 \times 2/2$.
- Inductive hypothesis: assume P(k) = k(k+1)/2.
- ▶ Inductive step: Assuming P(k) = k(k+1)/2, prove that P(k+1) = (k+1)(k+2)/2

$$P(k+1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= (k+1)(\frac{k}{2}+2) = \frac{(k+1)(k+2)}{2}.$$

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

prove that

 $P(n) \leq$

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

prove that

 $P(n) \leq 1 + \log_2 n.$

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

$$P(n) \leq 1 + \log_2 n.$$

• Basis:
$$k = 1$$
: $P(1) = 1 \le 1 + \log_2 1$.

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

$$P(n) \leq 1 + \log_2 n.$$

- Basis: k = 1: $P(1) = 1 \le 1 + \log_2 1$.
- ▶ Inductive hypothesis: Assume $P(k) \le 1 + \log_2 k$. Prove $P(k+1) \le 1 + \log_2(k+1)$.

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

$$P(n) \leq 1 + \log_2 n.$$

- Basis: k = 1: $P(1) = 1 \le 1 + \log_2 1$.
- ▶ Inductive hypothesis: Assume $P(k) \le 1 + \log_2 k$. Prove $P(k+1) \le 1 + \log_2(k+1)$.
- Inductive step: P(k+1) =

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

$$P(n) \leq 1 + \log_2 n.$$

- Basis: k = 1: $P(1) = 1 \le 1 + \log_2 1$.
- ▶ Inductive hypothesis: Assume $P(k) \le 1 + \log_2 k$. Prove $P(k+1) \le 1 + \log_2(k+1)$.
- Inductive step: $P(k+1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1$.

Given

$$P(n) = egin{cases} P(\lfloor rac{n}{2}
floor) + 1 & ext{if } n > 1 \ 1 & ext{if } n = 1 \end{cases}$$

$$P(n) \leq 1 + \log_2 n.$$

- Basis: k = 1: $P(1) = 1 \le 1 + \log_2 1$.
- ▶ Inductive hypothesis: Assume $P(k) \le 1 + \log_2 k$. Prove $P(k+1) \le 1 + \log_2(k+1)$.
- Inductive step: $P(k+1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1$.
- We are stuck since inductive hypothesis does not say anything about P(\[^{k+1}/₂]).

Strong Induction

• Use strong induction: In the inductive hypothesis, assume that P(i) is true for all $i \leq k$.

$$P(k+1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1$$

Strong Induction

• Use strong induction: In the inductive hypothesis, assume that P(i) is true for all $i \leq k$.

$$P(k+1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1$$

$$\leq 1 + \log_2(\lfloor \frac{k+1}{2} \rfloor) + 1$$

$$\leq 1 + \log_2(k+1) - 1 + 1 = 1 + \log_2(k+1)$$