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Problem Example

Find Minimum

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: Pair (i , xi ) such that xi = min{xj | 1 ≤ j ≤ n}.
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Algorithm Example

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n
3 do if xj < xi
4 then i ← j

5 return (i , xi )
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Running Time of Algorithm

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1

2 for j ← 2 to n
3 do if xj < xi
4 then i ← j

5 return (i , xi )

I At most 2n − 1 assignments and n − 1 comparisons.
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Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction: Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction:

Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction: Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction: Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l?

No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction: Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

Correctness of Algorithm: Proof 1

Find-Minimum(x1, x2, . . . , xn)
1 i ← 1
2 for j ← 2 to n
3 do if xj < xi
4 then i ← j
5 return (i, xi )

I Proof by contradiction: Suppose algorithm returns (k, xk) but there exists
1 ≤ l ≤ n such that xl < xk and xl = min{xj | 1 ≤ j ≤ n}.

I Is k < l? No. Since the algorithm returns (k, xk), xk ≤ xj , for all k < j ≤ n.
Therefore l < k.

I What does the algorithm do when j = l? It must set i to l , since we have been told
that xl is the smallest element.

I What does the algorithm do when j = k (which happens after j = l)? Since
xl < xk , the value of i does not change.

I Therefore, the algorithm does not return (k, xk) yielding a contradiction.

T. M. Murali April 25, May 2, 2011 Analysis of Algorithms



A Simple Problem Computational Tractability Asymptotic Order of Growth MergeSort

What is Algorithm Analysis?

I Measure resource requirements: how do the amount of time and space that
an algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of
space.
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Worst-case Running Time

I We will measure worst-case running time of an algorithm.
I Avoid depending on test cases or sample runs.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not
matter.

I Assume all elementary operations take unit time: assignment, arithmetic on a
fixed-size number, comparisons, array lookup, following a pointer, etc.

I Make analysis independent of hardware and software.
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Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor k.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

Definition
An algorithm is efficient if it has a polynomial running time.
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Upper and Lower Bounds

I Express “4n2 + 100 does not grow faster than n2.”

I Express “n2/4 grows faster than n + 1, 000, 000.”

Definition
Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist constant

s

c > 0

and n0 ≥ 0

such that

for all n ≥ n0,

we have f (n) ≤

c

g(n).

Definition
Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

Definition
Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In these definitions, c is a constant independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).
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Examples

I f (n) = pn2 + qn + r is

θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d ain
i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd) is the definition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every x > 0, log n = O(nx).

I For every r > 1 and every d > 0, nd = O(rn).
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Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).
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Divide and Conquer

I Break up a problem into several parts.

I Solve each part recursively.

I Solve base cases by brute force.

I Efficiently combine solutions for sub-problems into final solution.

I Common use:
I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).
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Mergesort

Sort

INSTANCE: Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.
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Merging Two Sorted Lists

I Merge two sorted lists A = a1, a2, . . . , ak and B = b1, b2, . . . bl .

1. Maintain a current pointer for each list.
2. Initialise each pointer to the front of its list.
3. While both lists are nonempty:

3.1 Let ai and bj be the elements pointed to by the current pointers.
3.2 Append the smaller of the two to the output list.
3.3 Advance the current pointer in the list that the smaller element belonged to.

4. Append the rest of the non-empty list to the output.

I Running time of this algorithm is O(k + l).
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Analysing Mergesort

1. Partition L into two lists A and B of size bn/2c and dn/2e respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements (T (n)) ≤
Worst-case running time for bn/2c elements +
Worst-case running time for dn/2e elements +
Time to split the input into two lists +
Time to merge two sorted lists.

I Assume n is a power of 2.
T (n) ≤ 2T (n/2) + cn, n > 2

T (2) ≤ c

I Three ways of solving this recurrence relation:
1. “Unroll” the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to determine the

constants.
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Unrolling the recurrence

I Recursion tree has log n levels.

I Total work done at each level is cn.

I Running time of the algorithm is cn log n.

I Use this method only to get an idea of the solution.
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Substituting a Solution into the Recurrence

I Guess that the solution is T (n) ≤ cn log n (logarithm to the base 2).
I Use induction to check if the solution satisfies the recurrence relation.

I Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
I Inductive hypothesis: assume T (m) ≤ cm log2 m for all m < n. Therefore,

T (n/2) ≤ (cn/2) log(n/2).
I Inductive step: Prove T (n) ≤ cn log n.

T (n) ≤ 2T
(n

2

)
+ cn

≤ 2

(
cn

2
log
(n

2

))
+ cn, by the inductive hypothesis

= cn log
(n

2

)
+ cn

= cn log n − cn + cn

= cn log n.

I Why doesn’t an attempt to prove T (n) ≤ kn, for some k > 0 work?
I Why is T (n) ≤ kn2 a “loose” bound?
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Proof for All Values of n

I We assumed n is a power of 2.

I How do we generalise the proof?

I Basic axiom: T (n) ≤ T (n + 1), for all n: worst case running time increases
as input size increases.

I Let m be the smallest power of 2 larger than n.

I T (n) ≤ T (m) = O(m log m) = O(n log n), because m ≤ 2n.
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