Topics

• Course logistics
• Overview of AI
Classroom Conduct

• Virginia Tech is committed to protecting the health and safety of all members of its community.
 – Wear a mask at all times while in class.
 – Isolate yourself from campus if you test positive for COVID or begin to feel symptoms that might be related to COVID.
 – Keep physical distance when feasible.
 – Check Virginia Tech Ready website for any update.

• Be a good citizen.

• Be committed. Be well.
Course Websites

- Course Homepage: http://courses.cs.vt.edu/~cs4804/
 - Tentative schedule
 - Updated throughout this semester
- Canvas: CS4804: https://canvas.vt.edu/courses/135929
 - Announcements
 - Homework assignments
 - Project assignments
 - Exams
- CS4804 GitHub: https://github.com/CS4804
Instructor: Yinlin Chen

- Ph.D. Computer Science, Virginia Tech
- Digital Library Architect and Assistant Professor, University Libraries
- Research Interests:
 - Digital libraries, Machine learning, Deep learning, Cloud computing, Natural language processing, Serverless computing, and Information retrieval.
- Website: https://www.yinlinchen.com/
- Email: ylchen@vt.edu
- Office hours: Tuesday 2:00 PM–3:00 PM, by appointment.
TA: Shakiba Davari

- 4th Year Ph.D. Student
- 3DI Lab
 - Doug Bowman

Research Interests:
- Human Computer Interaction
- AR/VR: UI design and UX
- Context Intelligent Adaptive AR

- Website: https://www.linkedin.com/in/sdavari/
- Email: sdavari@vt.edu
- Office hours: TBD
TA: Ying Shen

- 1th Year Ph.D. Student
- Research Interests:
 - Deep Learning
 - Natural Language Processing
- Website: https://yingshen-ys.github.io/
- Email: yings@vt.edu
- Office hours: TBD
Office Hours

• Start: 08/30, End: 12/13
• No office hours on Thanksgiving Week
Course Format

• Lectures (Tue and Thur)
 – In person: 3:30 PM to 4:45 PM, MCB 113
 – You should attend the class
 – We will take attendance
Course Topics Overview

- **Problem solving**
 - Search, Adversarial Search, Constraint satisfaction problem (CSP)
- **Knowledge, reasoning, and planning**
 - Logic, knowledge representation, automated planning
- **Uncertain Knowledge and reasoning**
 - Probabilistic, Markov decision process (MDP), Bayesian Networks
- **Machine Learning**
 - Reinforce learning / Deep learning / (Un)Supervise learning
- **Researches and Applications**
 - Natural Language Processing (NLP), Computer Vision, Robotics, Ethics
Textbook

 http://aima.cs.berkeley.edu

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

- Preface (pdf): Contents with subsections
- I Artificial Intelligence
 1 Introduction ... 1
 2 Intelligent Agents ... 36
- II Problem-solving
 3 Solving Problems by Searching ... 63
 4 Search in Complex Environments ... 110
 5 Adversarial Search and Games ... 146
 6 Constraint Satisfaction Problems ... 180
- III Knowledge, reasoning, and planning
 7 Logical Agents ... 208
 8 First-Order Logic ... 251
 9 Inference in First-Order Logic ... 280
 10 Knowledge Representation ... 314
 11 Automated Planning ... 344
- IV Uncertain knowledge and reasoning
 12 Quantifying Uncertainty ... 385
 13 Probabilistic Reasoning ... 412
 14 Probabilistic Reasoning over Time ... 461
 15 Probabilistic Programming ... 500
 16 Making Simple Decisions ... 528
 17 Making Complex Decisions ... 562
 18 Multiagent Decision Making ... 599

- V Machine Learning
 19 Learning from Examples ... 651
 20 Learning Probabilistic Models ... 721
 21 Deep Learning ... 750
 22 Reinforcement Learning ... 789
- VI Communicating, perceiving, and acting
 23 Natural Language Processing ... 823
 24 Deep Learning for Natural Language Processing ... 856
 25 Computer Vision ... 881
 26 Robotics ... 925
- VII Conclusions
 27 Philosophy, Ethics, and Safety of AI ... 981
 28 The Future of AI ... 1012

Appendix A: Mathematical Background ... 1023
Appendix B: Notes on Languages and Algorithms ... 1030
Bibliography ... 1033 (pdf and bib data)
Index ... 1069 (pdf)

- Exercises (website)
- Figures (pdf)
- Code (website): Pseudocode (pdf)

Covers: US, Global
Other VT Courses

- CS3604: Professionalism in Computing
- CS4824: Machine Learning
Homework Assignments

- Canvas
- Written problems
- Exercises based on class material and textbook
- Due at 11:59pm
Projects Assignment

- Canvas
- Programming problems
- Projects give you hands-on experience with the algorithms
- Python 3.6
- Due at 11:59pm
Late assignment policy

• Homework & project assignment submitted late without permission will be penalized according to the following formula:

\[
(Penalized \ score) = (Your \ raw \ score) \times (1 - 0.1 \times (# \ of \ days \ past \ deadline))
\]

• This formula will apply for up to three days, after which the homework will not be accepted and you will receive a grade of zero.
Exam Dates

- Midterm (10/14 3:30pm – 5:30pm):
 - In class or online with time limit
- Final (12/13 10:05am – 12:05pm):
 - In class or online with time limit
- Harder than homework assignments
- You must attend both midterm and final exam in order to pass the course
- No makeup exams
- Let us know (emails) if you cannot attend the exams due to personal reasons.
Grading breakdown

• 7%: Class attendance and participation
• 28%: Homework assignments
• 30%: Project assignments (2%: Project 0)
• 15%: Midterm exam
• 20%: Final exam
Academic integrity

• This course will have a zero-tolerance philosophy regarding plagiarism or other forms of cheating.
• Your assignments must be your own work.
• We will report incidents of academic dishonesty to the Office of the Undergraduate Honor System.
Health and Well-being

- **Cook Counseling**: 540-231-6557 to schedule an appointment and/or 24/7 crisis support. https://ucc.vt.edu/
- **Dean of Students Office**: 540 231-3787 for general advice. 540-231-6411 for after-hours crisis. https://dos.vt.edu/
- **Hokie Wellness**: https://hokiewellness.vt.edu/
- **Services for Students with Disabilities (SSD)**: 540-231-3788 or http://www.ssd.vt.edu/
- **Full listing of campus resources**: https://well-being.vt.edu/
Why did you choose this course?
What is Artificial Intelligence (AI)?

Movie: I, Robot (2014)

Movie: Terminator(s)
1984
1991
2003
2009
2015
2019
What is AI?
What is AI in Computer Science?

“The science and engineering of making intelligent machines, especially intelligent computer programs”.

- John McCarthy
History of Artificial Intelligence

1642 - First mechanical calculating machine built by French mathematician and inventor Blaise Pascal.

1837 - First design for a programmable machine, by Charles Babbage and Ada Lovelace.

1943 - Foundations of neural networks established by Warren McCulloch and Walter Pitts, drawing parallels between the brain and computing machines.

1950 - Alan Turing introduces a test—the Turing test—as a way of testing a machine's intelligence.

1955 - 'Artificial intelligence' is coined during a conference devoted to the topic.

1965 - ELIZA, a natural language program, is created. ELIZA handles dialogue on any topic; similar in concept to today's chatbots.

2009 - Google builds the first self-driving car to handle urban conditions.

2011 - IBM's Watson defeats champions of US game show Jeopardy!

2011-2014 - Personal assistants like Siri, Google Now, Cortana use speech recognition to answer questions and perform simple tasks.

2014 - Ian Goodfellow comes up with Generative Adversarial Networks (GAN).

2016 - AlphaGo beats professional Go player Lee Sedol 4-1.

Most universities have courses in Artificial Intelligence.

AI System

- AI System = Code (model/algorithm) + Data
 - Model-centric AI
 - Data-centric AI
Overview of AI

Artificial Intelligence

Machine Learning

Deep Learning
What is learning?

• 1, 2, 3, 5, 8, 13, 21, ?, ?, ?

• I study at the CS@VT, I should learn how to <....>?
State of the Art

Computer Vision

- Semantic Segmentation
 - 102 benchmarks
 - 1874 papers with code
- Image Classification
 - 240 benchmarks
 - 1652 papers with code
- Object Detection
 - 209 benchmarks
 - 1410 papers with code
- Image Generation
 - 155 benchmarks
 - 632 papers with code
- Denoising
 - 100 benchmarks
 - 612 papers with code

Natural Language Processing

- Language Modelling
 - 21 benchmarks
 - 1182 papers with code
- Machine Translation
 - 69 benchmarks
 - 1135 papers with code
- Question Answering
 - 90 benchmarks
 - 1066 papers with code
- Sentiment Analysis
 - 57 benchmarks
 - 687 papers with code
- Text Generation
 - 62 benchmarks
 - 515 papers with code
State of the Art

Speech

- Speech Recognition
 - 116 benchmarks
 - 472 papers with code
- Speech Synthesis
 - 2 benchmarks
 - 106 papers with code
- Dialogue Generation
 - 9 benchmarks
 - 86 papers with code
- Speech Enhancement
 - 11 benchmarks
 - 80 papers with code
- Voice Conversion
 - 1 benchmark
 - 62 papers with code

Medical

- Medical Image Segmentation
 - 81 benchmarks
 - 177 papers with code
- Drug Discovery
 - 14 benchmarks
 - 125 papers with code
- Lesion Segmentation
 - 6 benchmarks
 - 86 papers with code
- Medical Diagnosis
 - 3 benchmarks
 - 53 papers with code
- Brain Tumor Segmentation
 - 8 benchmarks
 - 53 papers with code

VT Virginia Tech
The Berkeley Crossword Solver

2012, 11th place
2021, 1st place

Deep learning

Trained on a database of 6 million paired clues and answers
AutoML-Zero: Evolving Code that Learns

```
def Setup():
    s4 = 1.8e-3  # Learning rate

def Predict():  # v0 = features
    v2 = v0 + v1  # Add noise
    v3 = v0 - v1  # Subtract noise
    v4 = dot(m0, v2)  # Linear
    s1 = dot(v3, v4)  # Multi.interac.
    m0 = s2 * m2  # Copy weights

def Learn():  # s0 = label
    s3 = s0 - s1  # Compute error
    m0 = outer(v3, v0)  # Approx grad
    s2 = norm(m0)  # Approx grad norm
    s5 = s3 / s2  # Normalized error
    v5 = s5 * v3
    m0 = outer(v5, v2)  # Grad
    m1 = m1 + m0  # Update weights
    m2 = m2 + m1  # Accumulate wghts.
    m0 = s4 * m1  # Generate noise
    v1 = uniform(2.4e-3, 0.67)
```

Computers Making Computers

Definition of AI

- AI has focused on the study and construction of agents that do the right thing.
- AI is concerned mainly with rational action. An ideal intelligent agent takes the best possible action in a situation.
- A rational agent is to achieve the best outcome or the best expected outcome.
Things to do This Week

• Course homepage and Canvas
• Mark exam dates in your calendar
• Reading: AIMA 2.1 – 2.4
Reading and Next Class

• Overview of AI: AIMA 1
• Next class:
 – Agents: AIMA 2.1 – 2.4
Self-Driving Bike