
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

SQL I

Today’s Topics

• Structured Query Language (SQL)
– Pronounced ‘Sequel’
– The most widely used relational query language

Recap: Cardinality
• Peter Chen, the father of ER modeling
• The degree of relationship (cardinality) is represented by characters “1”, “N”

or “M” usually placed at the ends of the relationships.
• Chen's notation

one-one

one-many

Recap: Cardinality

many-many

One to Many

ManagesIn TextBook Employees Departments

In Slide ManagesEmployees Departments

• Department has at most one manager. A single Employee is allowed to
manage more than one department

ManagesEmployees Departments
1 M

Participation Constraints
• Total participation means that every entity in the set is involved in

the relationship, e.g., each student must be guided by a professor
(there are no students who are not guided by any professor)

• Partial participation means that not all entities in the set are
involved in the relationship, e.g., not every professor guides a
student (there are professors who don’t).

GuidesIn TextBook Professor Student

ManagesProfessor Student
1..1 0..N

In Slide

Recap: Class Hierarchies

• Overlap constraints:
whether two subclasses are
allowed to contain the same
entity

• Covering constraints:
whether the entities in the
subclasses collectively
include all entities in the
superclass

RDBMS and SQL
• The DBMS is responsible for efficient evaluation

– Choose and run algorithms for declarative queries
– Choice of algorithm must not affect query answer
– Query optimizer: re-orders operations, generates query plan,

and still ensure that the answer does not change
• Many ways to write a query. DBMS figures out a fast

way to execute a query, regardless of how it is written

The SQL Query Language
• First version, SQL-86 in 1986, most recent version

in 2011 (SQL:2016)
• Accepted by the American National Standards

Institute (ANSI) in 1986 and by the International
Organization for Standardization (ISO) in 1987

• Each vendor provides its own implementation
(also called SQL dialect) of SQL

Key Characteristics of SQL
• Set-oriented and declarative
• Free-form language
• Case insensitive
• Can be used both interactively from a command

prompt or executed by a program

Using Command Prompt

Executed by a program

SQL Overview
• SQL Data Definition Language (DDL)

– Define and modify database schema
• SQL Data Manipulation Language (DML)

– Manipulate data present in the database
– Queries can be written intuitively

• Other Parts
– SQL views
– SQL indexes
– SQL privileges

SQL DDL
• SQL CREATE statement
• SQL ALTER statement
• SQL DROP statement
• And more…

DDL Concepts
• Usually, a schema is a collection of tables and a Database

is a collection of schemas
• SQL schema is a grouping of tables and other database

objects such as views, constraints, and indexes which
logically belong together
CREATE SCHEMA PURCHASE AUTHORIZATION
BBAESENS

• SQL table implements a relation from the relational model
CREATE TABLE PRODUCT …
CREATE TABLE PURCHASE.PRODUCT …

Creating Relations in SQL

▪ Creates the Students relation.
Observe that the type (domain) of
each field is specified, and enforced
by the DBMS whenever tuples are
added or modified.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

Creating Relations in SQL

▪ Creates the Students relation.
Observe that the type (domain) of
each field is specified, and enforced
by the DBMS whenever tuples are
added or modified.

▪ As another example, the Enrolled
table holds information about
courses that students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Relationship Sets to Tables
In translating a many-to-many
relationship set to a relation,
attributes of the relation must include:

1) Keys for each participating entity
set (as foreign keys). This set of
attributes forms a superkey for the
relation.
2) All descriptive attributes.

CREATE TABLE Works_In(
ssn CHAR(1),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)
REFERENCES Employees,

FOREIGN KEY (did)
REFERENCES Departments)

ssn did since
123-22-3666 51 1/1/91
123-22-3666 56 3/3/93
231-31-5368 51 2/2/92

Data Types
Data type Description

CHAR(n) Holds a fixed-length string with size n

VARCHAR(n) Holds a variable-length string with maximum size n

SMALLINT Small integer (no decimal) between -32768 and 32767

INT Integer (no decimal) between -2147483648 and 2147483647

FLOAT(n,d) Small number with a floating decimal point. The total maximum number of digits is n with a maximum of d digits to the right of the decimal point

DOUBLE(n,d) Large number with a floating decimal point. The total maximum number of digits is n with a maximum of d digits to the right of the decimal point

DATE Date in format YYYY-MM-DD

DATETIME Date and time in format YYYY-MM-DD HH:MI:SS

TIME Time in format HH:MI:SS

BOOLEAN True or false

BLOB Binary large object (e.g., image, audio, video)

User-defined Data Types
• CREATE DOMAIN creates a new domain. A domain is essentially a

data type with optional constraints. The user who defines a domain
becomes its owner.

• CREATE DOMAIN PRODTYPE AS VARCHAR(10)
CHECK (VALUE IN ('white', 'red', 'rose', 'sparkling'))

• CREATE DOMAIN CPI_DATA AS INT CHECK (value >= 0 AND
value <= 10);

• CREATE TABLE student(
sid char(9) PRIMARY KEY,
name varchar(30),
cpi CPI_DATA);

• PostgreSQL (supported). MySQL (not supported)

Create Table Statement
CREATE TABLE SUPPLIER
(SUPNR CHAR(4) NOT NULL PRIMARY KEY,
SUPNAME VARCHAR(40) NOT NULL,
SUPADDRESS VARCHAR(50),
SUPCITY VARCHAR(20),
SUPSTATUS SMALLINT)

CREATE TABLE PRODUCT
(PRODNR CHAR(6) NOT NULL PRIMARY KEY,
PRODNAME VARCHAR(60) NOT NULL,
CONSTRAINT UC1 UNIQUE(PRODNAME),
PRODTYPE VARCHAR(10),
CONSTRAINT CC1 CHECK(PRODTYPE IN ('white', 'red', 'rose','sparkling')),
AVAILABLE_QUANTITY INTEGER)

Create Table Statement
CREATE TABLE SUPPLIES
(SUPNR CHAR(4) NOT NULL,
PRODNR CHAR(6) NOT NULL,
PURCHASE_PRICE DOUBLE(8,2)
COMMENT 'PURCHASE_PRICE IN EUR',
DELIV_PERIOD TIME
COMMENT 'DELIV_PERIOD IN DAYS',
PRIMARY KEY (SUPNR, PRODNR),
FOREIGN KEY (SUPNR) REFERENCES SUPPLIER (SUPNR)
ON DELETE CASCADE ON UPDATE CASCADE,
FOREIGN KEY (PRODNR) REFERENCES PRODUCT (PRODNR)
ON DELETE CASCADE ON UPDATE CASCADE)

Create Table Statement
CREATE TABLE PURCHASE_ORDER
(PONR CHAR(7) NOT NULL PRIMARY KEY,
PODATE DATE,
SUPNR CHAR(4) NOT NULL,
FOREIGN KEY (SUPNR) REFERENCES SUPPLIER (SUPNR)
ON DELETE CASCADE ON UPDATE CASCADE)

CREATE TABLE PO_LINE
(PONR CHAR(7) NOT NULL,
PRODNR CHAR(6) NOT NULL,
QUANTITY INTEGER,
PRIMARY KEY (PONR, PRODNR),
FOREIGN KEY (PONR) REFERENCES PURCHASE_ORDER (PONR)
ON DELETE CASCADE ON UPDATE CASCADE,
FOREIGN KEY (PRODNR) REFERENCES PRODUCT (PRODNR)
ON DELETE CASCADE ON UPDATE CASCADE)

DROP
• DROP command can be used to drop or remove database

objects
– Can also be combined with CASCADE and RESTRICT
– Destroy relation: The schema information and the tuples are

deleted.
• Examples:

DROP SCHEMA PURCHASE CASCADE
DROP SCHEMA PURCHASE RESTRICT
DROP TABLE PRODUCT
DROP TABLE PRODUCT CASCADE
DROP TABLE PRODUCT RESTRICT

Alter Relations
• ALTER statement can be used to modify table column

definitions
• Examples:

ALTER TABLE Students ADD COLUMN firstYear: integer
The schema of Students is altered by adding a new field firstYear;

every tuple in the current instance is extended with a null value in
the new field

ALTER TABLE PRODUCT ADD PRODIMAGE BLOB
ALTER TABLE SUPPLIER ALTER SUPSTATUS SET DEFAULT

'10'

Truncate
• Drop and re-create the table, which is much faster than

deleting rows one by one, particularly for large tables.
• Cause an implicit commit, and so cannot be rolled back.
• Truncate table student
• vs DML – Delete

– Delete from student

Integrity Constraints (ICs)
▪ IC: condition that must be true for any instance of the

database; e.g., domain constraints.
– ICs are specified when schema is defined (or altered).
– ICs are checked when tuples are modified.

▪ A legal instance of a relation is one that satisfies all
specified ICs.
– DBMS should not allow illegal instances.

▪ If the DBMS checks ICs, stored data is more faithful to
real-world meaning.
– Avoids data entry errors, too!

Constraints
• Column constraints

– PRIMARY KEY constraint defines the primary key of the table
– FOREIGN KEY constraint defines a foreign key of a table
– UNIQUE constraint defines an alternative key of a table
– NOT NULL constraint prohibits null values for a column
– CHECK constraint defines a constraint on the column values
– DEFAULT constraint sets a default value for a column

Primary Key Constraints
▪ A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key fields,
and

2. This is not true for any subset of the key.
– Part 2 false? A superkey.
– If there’s >1 key for a relation, one of the keys is chosen to be

the primary key.
▪ E.g., sid is a key for Students.

– The set {sid, gpa} is a superkey.

Primary Keys in SQL
• Entity sets to tables. Easy.

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Employees

ssn
name

lot

ssn name lot

123-22-3666 Attishoo 48

231-31-5368 Smiley 22

131-24-3650 Smethurst 35

Primary and Candidate Keys in SQL
▪ Possibly many candidate keys (specified using UNIQUE),

one of which is chosen as the primary key.
CREATE TABLE Enrolled

(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY(sid,cid))What is the difference between these

two relations? CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Primary and Candidate Keys in SQL
▪ Possibly many candidate keys (specified using UNIQUE),

one of which is chosen as the primary key.

“For a given student and course, there is a
single grade.” vs. “Students can take only
one course, and receive a single grade for
that course; further, no two students in a
course receive the same grade.”

Used carelessly, an IC can prevent the
storage of database instances that arise in
practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY(sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Foreign Keys, Referential Integrity
▪ Foreign key : Set of fields in one relation that is used to

`refer’ to a tuple in another relation. (Must correspond to
primary key of the second relation.) Like a `logical pointer’.

▪ E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential integrity is

achieved, i.e., no dangling references.

Foreign Keys in SQL
▪ Only students listed in the Students relation should be allowed to enroll

for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Toopology112 A

53666 History105 B

Enrolled
sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Students

Enforcing Referential Integrity
▪ Consider Students and Enrolled; sid in Enrolled is a foreign

key that references Students.
▪ What should be done if an Enrolled tuple with a non-existent

student id is inserted? (Reject it!)

Enforcing Referential Integrity
▪ Consider Students and Enrolled; sid in Enrolled is a foreign key

that references Students.
▪ What should be done if an Enrolled tuple with a non-existent

student id is inserted? (Reject it!)
▪ What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.
– Disallow deletion of a Students tuple that is referred to.
– Set sid in Enrolled tuples that refer to it to a default sid.
– (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value

null, denoting `unknown’ or `inapplicable’.)
▪ Similar if primary key of Students tuple is updated.

Referential Integrity Constraints

▪ SQL/92 and SQL:1999
support all 4 options on
deletes and updates.
– Default is NO ACTION

(delete/update is rejected)
– CASCADE (also delete all

tuples that refer to deleted tuple)
– SET NULL / SET DEFAULT

(sets foreign key value of
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET NULL)

• What should happen to foreign keys in case a primary key is
updated or deleted?

Referential Integrity Constraints
• Foreign key has the same domain as the primary key it

refers to and either occurs as a value of it or NULL
• Options:

– ON UPDATE/DELETE RESTRICT: update/removal is halted if
referring tuples exist

– ON UPDATE/DELETE CASCADE: update/removal should be
cascaded to all referring tuples

– ON UPDATE/DELETE SET NULL: foreign keys in the referring
tuples are set to NULL

– ON UPDATE/DELETE SET DEFAULT: foreign keys in the referring
tuples are set to their default value

Referential Integrity Constraints

Check Constraints

▪ Allow you to make
assertions about the
data being inserted or
updated.

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT
CHECK (grade in (‘A’, ‘B’,

‘C’, ‘D’, ‘F’))

Check Constraints

▪ Can also compare to other columns in the tuple:

CREATE TABLE Ranges
(min INT,
max INT,
PRIMARY KEY (min, max),
CHECK (min < max))

Every department has one manager.
Every did value in Departments table must appear in a
row of the Manages table (with a non-null ssn value!)

Review: Key + Participation Constraints

Participation Constraints in SQL
▪ We can capture participation constraints involving one entity

set in a binary relationship, but little else.

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Review: Weak Entities

▪ A weak entity can be identified uniquely only by considering the
primary key of another (owner) entity.
– Owner entity set and weak entity set must participate in a one-to-many

relationship set (1 owner, many weak entities).
– Weak entity set must have total participation in this identifying

relationship set.

Translating Weak Entity Sets
▪ Weak entity set and identifying relationship set are

translated into a single table.
– When the owner entity is deleted, all owned weak entities

must also be deleted.

CREATE TABLE Dep_Policy (
policy_name CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policy_name, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

• Employees purchase
policies. Every policy is
purchased by exactly one
employee (key – many-to-
one + participation).

• Policies benefit
dependents. Every
dependent is covered by
exactly one policy (key –
many-to-one +
participation). Dependents
are uniquely identified by
their pname and the policy
covering them (weak).

▪ The key constraints
allow us to combine
Purchaser with
Policies and
Beneficiary with
Dependents.

▪ Participation
constraints lead to
NOT NULL
constraints.

CREATE TABLE Policies (
policyid INTEGER NOT NULL,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)
CREATE TABLE Dependents (

policy_name CHAR(20) NOT NULL,
age INTEGER,
policyid INTEGER NOT NULL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policy_name, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

Review: Key Constraints

Each dept has at most
one manager, according
to the key constraint
on Manages.

1-to-1 1-to Many Many-to-1 Many-to-Many

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Translating ER with Key Constraints
dname

budgetdid

since

lot
name

ssn

ManagesEmployees Departments

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,

FOREIGN KEY (did)
REFERENCES Departments)

Translating ER with Key Constraints, cont

Since each department has a unique manager, we could
instead combine Manages and Departments.

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,

FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

Vs.

dname
budgetdid

since

lot
name

ssn

ManagesEmployees Departments

SQL DML
• SQL INSERT statement
• SQL DELETE statement
• SQL UPDATE statement
• SQL SELECT statement

SQL INSERT Statement
INSERT INTO PRODUCT VALUES
('980', 'Chateau Angelus, Grand Clu Classé, 1960', 'red',
6)

INSERT INTO PRODUCT(PRODNR, PRODNAME, PRODTYPE,
AVAILABLE_QUANTITY) VALUES
('980', 'Chateau Angelus, Grand Clu Classé, 1960', 'red',
6)

INSERT INTO PRODUCT(PRODNR, PRODNAME, PRODTYPE) VALUES
('980', 'Chateau Angelus, Grand Clu Classé, 1960', 'red')

SQL INSERT Statement
INSERT INTO PRODUCT(PRODNR, PRODNAME, PRODTYPE,
AVAILABLE_QUANTITY) VALUES
('980', 'Chateau Angelus, Grand Clu Classé, 1960', 'red',
6),
('1000', 'Domaine de la Vougeraie, Bâtard Montrachet',
Grand cru, 2010’, 'white', 2),
('1002', 'Leeuwin Estate Cabernet Sauvignon 2011',
'white', 20)

INSERT INTO INACTIVE-SUPPLIERS(SUPNR)
SELECT SUPNR FROM SUPPLIER

EXCEPT
SELECT SUPNR FROM SUPPLIES

SQL DELETE Statement
DELETE FROM PRODUCT
WHERE PRODNR = '1000'

DELETE FROM SUPPLIER
WHERE SUPSTATUS IS NULL

DELETE FROM SUPPLIES
WHERE PRODNR IN (SELECT PRODNR

FROM PRODUCT
WHERE PRODNAME LIKE '%CHARD%')

SQL DELETE Statement
DELETE FROM SUPPLIER R
WHERE NOT EXISTS

(SELECT PRODNR
FROM SUPPLIES S
WHERE R.SUPNR = S.SUPNR)

DELETE FROM SUPPLIES S1
WHERE S1.PURCHASE_PRICE >
(SELECT 2 * AVG(S2.PURCHASE_PRICE)
FROM SUPPLIES S2
WHERE S1.PRODNR = S2.PRODNR)

DELETE FROM PRODUCT

SQL UPDATE Statement
UPDATE PRODUCT
SET AVAILABLE_QUANTITY = 26
WHERE PRODNR = '0185'

UPDATE SUPPLIER
SET SUPSTATUS = DEFAULT

UPDATE SUPPLIES
SET DELIV_PERIOD = DELIV_PERIOD+7
WHERE SUPNR IN (SELECT SUPNR

FROM SUPPLIER
WHERE SUPNAME = 'Deliwines')

SQL UPDATE Statement
UPDATE SUPPLIES S1
SET (PURCHASE_PRICE, DELIV_PERIOD) =
(SELECT MIN(PURCHASE_PRICE), MIN(DELIV_PERIOD)
FROM SUPPLIES S2
WHERE S1.PRODNR = S2.PRODNR)
WHERE SUPNR = '68'

ALTER TABLE SUPPLIER ADD SUPCATEGORY VARCHAR(10) DEFAULT
'SILVER'
UPDATE SUPPLIER SET SUPCATEGORY =
CASE WHEN SUPSTATUS >= 70 AND SUPSTATUS <= 90 THEN 'GOLD'
WHEN SUPSTATUS >= 90 THEN 'PLATINUM’ ELSE 'SILVER'
END

SELECT Statement
SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[ORDER BY <column list>]
[GROUP BY <column list>]
[HAVING <predicate>]
[LIMIT <integer>]

SELECT Statement Overview
• The result of an SQL SELECT statement is a multiset,

and not a set!
• In a multiset (aka bag), the elements are not ordered and

there can be duplicates
• Examples: set {10, 5, 20} and multiset {10, 5, 10, 20, 5,

10}
• SQL does not eliminate duplicates

– Duplicate elimination is expensive
– User may want to see duplicate tuples
– Duplicates may be considered by aggregate functions

Basic Single-Table Queries
• SELECT [DISTINCT] <column expression list>

FROM <single table>
[WHERE <predicate>]

• Simplest version is straightforward
– Produce all tuples in the table that satisfy the predicate
– Output the expressions in the SELECT list
– Expression can be a column reference, or an arithmetic

expression (e.g., *, /) over column refs

Example: SELECT Statement

Sailors
sid sname rating age

1 Fred 7 22
2 Jim 2 39
3 Nancy 8 27

• Find all 27-year-old sailors:
SELECT *
FROM Sailors AS S
WHERE S.age=27;

• To find just names and rating,
replace the first line to:
SELECT S.sname, S.rating
FROM Sailors AS S
WHERE S.age=27 and rating > 5;

SELECT Statement vs Relational Algebra
• Relational Algebra is set

semantics (everything is a set),
so removes duplicates
automatically.

• SQL is bag semantics
(everything is a multiset), so
removes duplicates only when
asked to (using distinct)

Let’s Do Lab
• https://github.com/VTCourses/CS4604_Labs/
• 1.ddl_dml

https://github.com/VTCourses/CS4604_Labs/

SELECT DISTINCT
SELECT DISTINCT S.name, S.gpa
FROM students S

• DISTINCT specifies removal of duplicate rows before
output

• Can refer to the students table as “S”, this is called an
alias

Simple Queries

SUPNR SUPNAME SUPADDRESS SUPCITY SUPSTATUS

21 Deliwines 240, Avenue of the Americas New York 20

32 Best Wines 660, Market Street San Francisco 90

37 Ad Fundum 82, Wacker Drive Chicago 95

52 Spirits & co. 928, Strip Las Vegas NULL

68 The Wine Depot 132, Montgomery Street San Francisco 10

69 Vinos del Mundo 4, Collins Avenue Miami 92

SUPPLIER

Simple Queries
Q2: SELECT SUPNR, SUPNAME FROM SUPPLIER

SUPNR SUPNAME

21 Deliwines

32 Best Wines

37 Ad Fundum

52 Spirits & co.

68 The Wine Depot

69 Vinos del Mundo

Simple Queries
Q3: SELECT SUPNR

FROM PURCHASE_ORDER

SUPNR

32

32

37

37

37

37

37

68

69

94

Q4: SELECT DISTINCT
SUPNR FROM
PURCHASE_ORDER

SUPNR

32

37

68

69

94

Renaming (Alias)
• Rename a column use AS
• SELECT column AS new_column_name From <single

table>
• It is not the same as RENAME COLUMN or CHANGE in

DDL

Simple Queries
Q5: SELECT SUPNR, supstatus/3 AS
MONTH_DELIV_PERIOD FROM SUPPLIER

supnr month_deliv_period
21 6
32 30
37 31
52 None
68 3
69 30

Where Clause
• Boolean operators (and or not ...)
• Comparison operators (<, >, =, ...)
• Wildcard Operators (%, _)
• Set-Comparison Operators (IN, NOT IN, EXISTS)
• and more...

Wildcard Operators
• find student ssns who live on “main” (st or str or street)

Select ssn
from student
where address like “main%”

• %: variable-length don’t care
• _: single-character don’t care

Simple Queries

SUPNR SUPNAME SUPADDRESS SUPCITY SUPSTATUS

21 Deliwines 240, Avenue of the Americas New York 20

32 Best Wines 660, Market Street San Francisco 90

37 Ad Fundum 82, Wacker Drive Chicago 95

52 Spirits & co. 928, Strip Las Vegas NULL

68 The Wine Depot 132, Montgomery Street San Francisco 10

69 Vinos del Mundo 4, Collins Avenue Miami 92

94 The Wine Crate 182, Wacker Drive Chicago 75

SUPPLIER

Simple Queries

Q6: SELECT SUPNR, SUPNAME FROM SUPPLIER
WHERE SUPCITY = 'San Francisco'

SUPNR SUPNAME

32 Best Wines

68 The Wine Depot

Simple Queries

Q7: SELECT SUPNR, SUPNAME FROM SUPPLIER
WHERE SUPCITY = 'San Francisco' AND SUPSTATUS >
80

SUPNR SUPNAME

32 Best Wines

Simple Queries

Q8: SELECT SUPNR, SUPNAME, SUPSTATUS
FROM SUPPLIER WHERE SUPSTATUS BETWEEN 70 AND 80

SUPNR SUPNAME SUPSTATUS

94 The Wine Crate 75

Simple Queries
Q9: SELECT SUPNR, SUPNAME, SUPSTATUS

FROM SUPPLIER WHERE SUPSTATUS IN (10, 90);

supnr supname supstatus
32 Best Wines 90
68 The Wine Depot 10

Simple Queries
Q10: SELECT SUPNR, SUPNAME

FROM SUPPLIER
WHERE SUPNAME LIKE '%ine%'

Note: underscore (_) is a substitute for a single character!

supnr supname
21 Deliwines
32 Best Wines
68 The Wine Depot
94 The Wine Crate

Simple Queries
Q11: SELECT SUPNR, SUPNAME

FROM SUPPLIER
WHERE SUPSTATUS IS NULL

SUPNR SUPNAME

52 Spirits & Co.

Reading and Next Class

• SQL I: CH5
• Next: SQL II: CH5

