
CS 4604: Introduction to
Database Management Systems

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen

BCNF, 3NF and Normalization

Today’s Topics

• DB design and normalization
– pitfalls of bad design
– decomposition
– normal forms

Goal

• Design ‘good’ tables
• Define what ‘good’ means
• Fix ‘bad’ tables

• in short: “we want tables where the attributes depend on
the primary key, on the whole key, and nothing but the
key”

Pitfalls

▪ takes1 (ssn, c-id, grade, name, address)

Pitfalls

• Key: {ssn, c-id}

Pitfalls

• ‘Bad’ - why? because: ssn->address, name

Redundant!

Pitfalls

• Redundancy
–space
–(inconsistencies)
–insertion/deletion anomalies

Pitfalls

• Insertion anomaly:
–“jones” registers, but takes no class - no place to store his

address!

Pitfalls

• deletion anomaly: delete the last record of ‘smith’ (we
lose his grade!)

Solution: decomposition

• split offending table in two (or more), eg.:

? ?

Decompositions

• A tool that allows us to eliminate redundancy

• Lossless-Join Decomposition

• Dependency-Preserving Decomposition

Decompositions - lossy

–R1(ssn, grade, name, address) R2(c-id, grade)

ssn->name, address
ssn, c-id -> grade FDs

Decompositions - lossy

–can not recover original table with a join!

ssn->name, address
ssn, c-id -> grade

Example: lossy
• R = (A,B,C); decomposed into R1(A,B); R2(B,C)

Example: lossy
• R = (A,B,C); decomposed into R1(A,B); R2(B,C)

Decompositions

• example of non-dependency preserving

S# -> address, status
address -> status

S# -> address S# -> status

Decompositions

• (drill: is it lossless?)

S# -> address, status
address -> status

S# -> address S# -> status

Decompositions - lossless

• Definition: Consider schema R, with FD ‘F’. R1, R2 is a lossless
join decomposition of R if we always have: R1 ⨝ R2 = R

• An easier criterion?

Decompositions - lossless

• Theorem: lossless join decomposition if the joining
attribute is a superkey in at least one of the new tables

• Formally: if you are decomposing R into R1 and R2 then
(so R = R1 U R2)

Decompositions - lossless

• Example

ssn->name, address
ssn, c-id -> grade

ssn->name, addressssn, c-id -> grade

R1 R2

Decompositions – depend. pres

• informally: we don’t want the original FDs to span two
tables - counterexample:

S# -> address, status
address -> status

S# -> address S# -> status

Decompositions – depend. pres

• dependency preserving decomposition:

S# -> address, status
address -> status

S# -> address address -> status

(but: S#->status ?)

Decompositions – depend. pres

• informally: we don’t want the original FDs to span two
tables.

• So more specifically: … the FDs of the canonical cover.

Decompositions – depend. pres

• why is dependency preservation good?

S# -> address address -> statusS# -> address
S# -> status

(address->status: ‘lost’)

Decompositions – depend. pres

• A: eg., record that ‘Blacks’ has status ‘A’

S# -> address address -> statusS# -> address
S# -> status

(address->status: ‘lost’)

Decompositions – conclusion

• Decompositions should always be lossless
– joining attribute -> superkey

• Whenever possible, we want them to be dependency
preserving (not always possible to do that)

Normal Forms

• Normal forms (How to detect the problem)
– Boyce Codd Normal Form (BCNF)
– First Normal Form (1NF) = all attributes are atomic
– Second Normal Form (2NF) = old and obsolete
– Third Normal Form (3NF) = rarely preferred over BCNF
– Fourth Normal Form (4NF) = unnecessary/complex

• R in BCNF is in 3NF, R in 3NF is in 2NF, R in 2NF is in
1NF

Normal Forms

• We saw how to fix ‘bad’ schemas
• But what is a ‘good’ schema?
• Answer: ‘good’, if it obeys a ‘normal form’

– i.e., a set of rules.
• Typically: Boyce-Codd Normal Form (BCNF)

– A simple condition for removing redundancy/ anomalies from
relations

Boyce-Codd Normal Form (BCNF)
• Definition: a relation R is in BCNF wrt F, if:

– Informally: everything depends on the full key, and nothing but
the key

– Semi-formally: every determinant i.e., the left-side (LHS) is a
candidate key

– Formally: for every FD A1A2...An à B in F
• A1A2...An à B is trivial (a superset of B) or
• A1A2...An is a superkey for R (if A1A2...An à B is nontrivial)

• Non-trivial means RHS is not a subset of LHS
• “Whenever a set of attributes of R is determining another

attribute, it should determine all attributes of R.”

Example
Name PID Phone Number

Nathan nate (540) 231 - 1234
Nathan nate (540) 231 - 5678
John john (808) 123 - 4567
John john (808) 123 - 1239

• What are the dependencies? SSN à Name
• Is the left side a superkey? No
• Is it in BCNF? No

• Theorem: given a schema R and a set of FD ‘F’, we can
always decompose it to schemas R1, … Rn, so that
– R1, … Rn are in BCNF and
– The decompositions are lossless
– Note: some decompositions might lose dependencies

• Dependency-preserving is not guaranteed

• It is guaranteed that we can always decompose it to
3NF relation schemas, lossless, and dependency-
preserving

Normalization

Decompose it into BCNF
PID Name

nate Nathan
john John

PID Phone Number
nate (540) 231 - 1234
nate (540) 231 - 5678
john (808) 123 - 4567
john (808) 123 - 1239

SSN à Name

Decomposition into BCNF: Algorithm

• For a relation R with a set of FDs F
• Given X ⊂ R, A be a single attribute in R

1. For every FD Xà A that violates BCNF
• Decompose R into R – A and XA

2. Repeat recursively
• R – A denotes the set of attributes other than A in R
• XA denotes the union of attributes in X and A

Example Decomposition
• R = {C,S,J,D,P,Q,V} and C is a superkey
• F = {JP → C, SD → P, J → S}
• JP is a superkey (BCNF)
• SD is not a superkey nor is P ⊆ SD, so in violation of BCNF

– Compute SD+ = {S,D,P}
– Decompose R into

• R1 = SD+ = {S,D,P}
• R2 = SD ∪ (R − SD+) = {S,D} ∪ {C,J,Q,V} = {S,D,C,J,Q,V}

• J → S is in violation of BCNF
– Compute J+ = {J, S}
– Decompose R2 into

• R3 = J+ = {J, S}
• R4 = J ∪ (R2 – J+) = {J} ∪ {D, C, Q, V} = {J, D, C, Q, V}

• The BCNF form of the relation is SDP, JS, JDCQV

BCNF Decomposition
• Find a dependency that violates the BCNF condition: Xà A

A1A2...An à B1B2….Bn

• Heuristic : choose B1B2...Bn “as large as possible”, helps
avoid unnecessarily fine-grained decomposition

Decompose:
Continue until there are
no BCNF violations left.

Example Decomposition
• Person (name, ssn, age, EyeColor, phonenum)
• FD: SSN à Name, age, EyeColor
• BCNF:

– Person1 (ssn, phonenum)
– Person2 (ssn, name, age, EyeColor)

ssn
Name,
age,
EyeColor

phonenum

Example Decomposition

• Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment, StudentName, Address)

• FD: Number, DeparmentName à CourseName,
Classroom, Enrollment

• Compute {Number, DeparmentName}+ = {Number,
DeparmentName, CourseName, Classroom, Enrollment}
– R1 = {Number, DeparmentName, CourseName, Classroom,

Enrollment}
– R2 = {Number, DeparmentName, StudentName, Address}

Example Decomposition
• Students(ID, Name, AdvisorId, AdvisorName,

FavouriteAdvisorId)
• FD:

– ID à Name, FavouriteAdvisorId
– AdvisorId à AdvisorName

• {ID, AdvisorId} is the key
• Compute ID+ = {ID, Name, FavouriteAdvisorId}
• Decompose R into

– R1 = {ID, Name, FavouriteAdvisorId}
– R2 = {ID, AdvisorId, AdvisorName}

• Decompose R2 into
– R3 = {AdvisorId, AdvisorName}
– R4 = {ID, AdvisorId}

Example Decomposition
• Person (Name, ssn, Age, EyeColor, phonenum, Draftworthy)
• F = {SSN à Name, Age, EyeColor, Age à Draftworthy }
• SSN à Name, Age, EyeColor,Draftworthy

– Compute SSN+ = {SSN, Name, Age, EyeColor, Draftworthy}
– Decompose R into

• R1 = SSN+ = {SSN, Name, Age, EyeColor, Draftworthy}
• R2 = SSN ∪ (R – SSN+) = {SSN} ∪ {phonenum} = {SSN, phonenum}

• Age à Draftworthy
– Compute Age+ = {Age, Draftworthy}
– Decompose R1 into

• R3 = Age+ = {Age, Draftworthy}
• R4 = Age ∪ (R1 – Age+) = {Age} ∪ {SSN, Name, EyeColor} = {Age, SSN,

Name, EyeColor}

Two-attribute relations

• Let A and B be the only two attributes of R
• Claim: R is in BCNF.
• If A à B is true, B à A is not:

– A à B does not violate BCNF
• If B à A is true, A à B is not:

– Symmetric
• If A à B is true, B à A is true:

– Both are keys, therefore neither violate BCNF

Is BCNF Decomposition unique?

• R(SSN, netid, phone)
• FD1: SSN à netid
• FD2: netid à SSN
• If we do FD1 first:

– (SSN, netid) and (SSN, phone)
• If we do FD2 first:

– (netid, SSN) and (netid, phone)

Summary BCNF
• BCNF: each field contains data that cannot be inferred via FDs

– ensuring BCNF is a good heuristic.
• Not in BCNF? Try decomposing into BCNF relations
• BCNF removes certain types of redundancies

– for examples of redundancy that it cannot remove, see "multi-valued
redundancy” (Addressed by 4NF, see textbook)

• BCNF decomposition avoids information loss
– You can construct the original relation instance from the decomposed

relations’ instances
• Downside of BCNF: not all dependencies are preserved (some

are split across relations)
– If you want to preserve dependencies, you will have redundancy

(Tradeoff!)

Lossless Decomposition but Lose dependencies

A → B; C → B

=

A B C
1 2 3
4 5 6
7 2 8

A C
1 3
4 6
7 8

B C
2 3
5 6
2 8


A C
1 3
4 6
7 8

B C
2 3
5 6
2 8

A B C
1 2 3
4 5 6
7 2 8

• But, now we can't check A → B without doing a join!

First Normal Form (1NF)

• All attributes are atomic (ie., no set-valued attr., a.k.a.
‘repeating groups’)

• Each attribute name must be unique.
• Each attribute value must be single.
• Each row must be unique.

1NF?

Topic Student Grade

Intro to DBMS Joe A
Sue B

Java Zhen C
Sally D

• All attributes are atomic (ie., no set-valued attr., a.k.a.
‘repeating groups’)

• Each attribute name must be unique.
• Each attribute value must be single.
• Each row must be unique.

1NF - No

Topic Student Grade

Intro to DBMS Joe A
Sue B

Java Zhen C
Sally D

• Each attribute name must be unique.
• Each attribute value must be single.
• Each row must be unique.

1NF

Topic Student Grade

Intro to DBMS Joe A
Intro to DBMS Sue B

Java Zhen C
Java Sally D

• Each attribute name must be unique.
• Each attribute value must be single.
• Each row must be unique.

Topic, Student -> Grade

Second Normal Form (2NF)

• Table is already in 1NF
• No non-key attribute is dependent on any proper subset

of the key
– All partial dependencies are moved to another table.

2NF

• 1NF + No non-key attribute is dependent on any
proper subset of the key (i.e. no partial
dependencies).

StudentID and ProjectID are key

2NF

Third Normal Form (3NF)

• Table is already in 2NF.
• Nonprimary key attributes do not depend on other

nonprimary key attributes
(i.e. no transitive dependencies)
– All transitive dependencies are moved into another

table.

3NF
• 2NF + No Transitive Dependencies

StudyID Course Name Teacher Name Teacher Tel
1 Database Sok Piseth 012 123 456
2 Database Sao Kanha 0977 322 111
3 Web Prog Chan Veasna 012 412 333
4 Web Prog Chan Veasna 012 412 333
5 Networking Pou Sambath 077 545 221

StudyId -> CourseName, TeacherName, TeacherTel
TeacherName -> TeacherTel

StudyID Course Name Teacher Name Teacher Tel
1 Database Sok Piseth 012 123 456
2 Database Sao Kanha 0977 322 111
3 Web Prog Chan Veasna 012 412 333
4 Web Prog Chan Veasna 012 412 333
5 Networking Pou Sambath 077 545 221
StudyId -> CourseName, TeacherName, TeacherTel
TeacherName -> TeacherTel

Teacher Name Teacher Tel
Sok Piseth 012 123 456
Sao Kanha 0977 322 111
Chan Veasna 012 412 333
Pou Sambath 077 545 221

StudyI
D

Course Name Teacher Name

1 Database Sok Piseth
2 Database Sao Kanha
3 Web Prog Chan Veasna
4 Web Prog Chan Veasna
5 Networking Pou Sambath

3NF – Your turn

Library_Patron(Id, Name, Fines, BookId,
BookName)
Id Name Fines BookId BookName
1 Joe 0.00 ABCD The Cat in the Hat
2 Sally 1.00 DEFG Fox in Socks

Id -> Name Fines BookId
BookId -> BookName

3NF – Your turn
Library_Patron(Id, Name, Fines, BookId)

Id Name Fines BookId
1 Joe 0.00 ABCD
2 Sally 1.00 DEFG

BookId BookName
ABCD The Cat in the Hat
DEFG Fox in Socks

Books(BookId, BookName)

Third Normal Form (3NF)
• Recall BCNF: not all dependencies are preserved
• Reln R with FDs F is in 3NF if, for all X → A in F+

– A ∈ X (called a trivial FD), or
– X is a superkey of R, or
– A is part of some candidate key (not superkey!) for R.

(sometimes stated as “A is prime”)

• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible.
• It is a compromise, used when BCNF not achievable

– (e.g., no “good” decomp, or performance considerations).
– Lossless-join, dependency-preserving decomposition of R into a

collection of 3NF relations always possible.

Decomposition into 3NF
• Obviously, the algorithm for lossless join decomp into BCNF

can be used to obtain a lossless join decomp into 3NF
(typically, can stop earlier) but does not ensure dependency
preservation.

• To ensure dependency preservation, one idea:
– If X → Y is not preserved, add relation XY.
Problem is that XY may violate 3NF!
e.g., consider the addition of CJP to `preserve' JP → C. What if we also

have J → C ?
• Refinement: Instead of the given set of FDs F, use a

minimal cover for F.

Recall: Minimal Cover for a Set of FDs
• Minimal cover G for a set of FDs F:

– Closure of F = closure of G.
– Right hand side of each FD in G is a single attribute.
– If we modify G by deleting an FD or by deleting attributes from

an FD in G, the closure changes.

• Intuitively, every FD in G is needed, and ‘as small as
possible’ in order to get the same closure as F

• e.g., A → B, ABCD → E, EF → GH, ACDF → EG has
the following minimal cover:
– A → B, ACD → E, EF → G and EF → H

Normal forms - 3NF

how to bring a schema to 3NF?
two algo’s in book: First one:
• start from ER diagram and turn to tables
• then we have a set of tables R1, ... Rn which are in 3NF
• for each FD (X->A) in the cover that is not preserved,

create a table (X,A)

Normal forms - 3NF

how to bring a schema to 3NF?
two algo’s in book: Second one (‘synthesis’)
• take all attributes of R
• for each FD (X->A) in the cover, add a table (X,A)
• if not lossless, add a table with appropriate key

We prefer Synthesis as it is
clearer and does not need ER
diagrams

3NF Synthesis Algorithm

● Let F be the set of all FDs of R.
● We will compute a lossless-join, dependency-preserving

decomposition of R into S, where every relation in S is in 3NF.

1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

3NF Synthesis Algorithm

1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

Students (FirstName, Hall, Address)
F = { FirstName->Hall, Address; Hall -> Address }

3NF Synthesis Algorithm

1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

Students (FirstName, Hall, Address)
F = { FirstName->Hall, Address; Hall -> Address }

1. Minimal Basis Fc: { FirstName -> Hall, Hall -> Address }

3NF Synthesis Algorithm

1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

Students (FirstName, Hall, Address)
F = { FirstName->Hall, Address; Hall -> Address }

1. Minimal Basis: { FirstName -> Hall, Hall -> Address }
2. Keys for R: {FirstName}

3NF Synthesis Algorithm
1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

Students (FirstName, Hall, Address)
F = { FirstName->Hall, Address; Hall -> Address }

1. Minimal Basis: { FirstName -> Hall, Hall -> Address }
2. Keys for R: {FirstName}
3. New Relations: Names(FirstName, Hall), Halls(Hall, Address)

3NF Synthesis Algorithm
1. Find a minimal basis (canonical cover) for F, say G.
2. Find all keys for R.
3. For every FD X → A in G, use X ∪ A as the schema for one of the

relations in S.
4. If the attributes in none of the relations in S form a superkey for R,

add another relation to S whose schema is a key for R.

Students (FirstName, Hall, Address)
F = { FirstName->Hall, Address; Hall -> Address }

1. Minimal Basis: { FirstName -> Hall, Hall -> Address }
2. Keys for R: {FirstName}
3. New Relations: Names(FirstName, Hall), Halls(Hall, Address)
4. Are the attributes of Names or Halls a superkey for Students?

Example: 3NF

Example:
R: ABC
F: A->B, C->B

• Q1: what is the cover?

• Q2: what is the decomposition to 3NF?

Example: 3NF

Example:
R: ABC
F: A->B, C->B

• Q1: what is the cover?
A1: ‘F’ is the cover
• Q2: what is the decomposition to 3NF?

Example: 3NF: Step 1
Example:

R: ABC
F: A->B, C->B

• Q1: what is the cover?
– A1: ‘F’ is the cover

• Q2: what is the decomposition to 3NF?
– A2: one table each for the FDs
– R1(A,B), R2(C,B), ...
– But is it lossless?? Or equivalently do any of the relations
– in S form a superkey for R?

Example: 3NF: Step 2

Example:
R: ABC
F: A->B, C->B

• Q1: what is the cover?
– A1: ‘F’ is the cover

• Q2: what is the decomposition to 3NF?
– A2: R1(A,B), R2(C,B), R3(A,C)
– (note that AC is a key for R)

Normal forms - 3NF vs BCNF

• If ‘R’ is in BCNF, it is always in 3NF (but not the reverse)
• In practice, aim for

– BCNF; lossless join; and dep. preservation
• if impossible, we accept

– 3NF; but insist on lossless join and dep. preservation

Why Normalization ?

▪ By limiting redundancy, normalization helps maintain
consistency and saves space.

▪ But performance of querying can suffer because related
information that was stored in a single relation is now
distributed among several.

▪ Sometimes you will de-normalize for the sake of performance.
– But do so cautiously and intelligently.

Normal Forms

Form Requirement
1NF Each attribute name must be unique.

Each attribute value must be single.
Each row must be unique.

2NF 1NF
no non-key attribute is dependent on any proper subset of the key

3NF 2NF
No transitive dependencies

BCNF 3NF
All determinants are superkeys

4NF BCNF
No multi-valued dependencies

5NF, 6NF Who cares.. ☺

Summary

• What to do when a lossless-join, dependency preserving
decomposition into BCNF is impossible?
– There is a more permissive Third Normal Form (3NF)
– But you’ll have redundancy. Beware. You will need to keep it from

being a problem in your application code.

• Note: even more restrictive Normal Forms exist
– we don't cover them in this course, but some are

in the book

Reading and Next Class

• BCNF, 3NF and Normalization: Ch 19.4-19.9
• Next: ACID and Transactions: Ch 16.1 – 16.6

