CS 4604: Introduction to Database Management Systems

Functional Dependencies

Virginia Tech CS 4604 Sprint 2021
Instructor: Yinlin Chen
Today’s Topics

• Functional dependencies (FD)
 – Definition
 – Armstrong’s “axioms”
 – FD closure and cover
 – Attribute closure
 – (Super)key and candidate key
Steps in Database Design

• Requirements Analysis
 – user needs; what must database do?

• Conceptual Design
 – *high level description (often done w/ER model)*
 – ORM encourages you to program here

• Logical Design
 – translate ER into DBMS data model
 – ORMs often require you to help here too

• Schema Refinement
 – consistency, normalization

• Physical Design - indexes, disk layout

• Security Design - who accesses what, and how
Bad Relation Converted from E/R Diagram

- Hard to use (CRUD)
- Mental effort (Treat others are mind readers)
- Arbitrarily (No rules followed)
- **Redundancy** (Space, Inconsistencies, etc.)
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-1234</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-6543</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>San Jose</td>
</tr>
</tbody>
</table>

- One person may have multiple phones, but lives in only one city.
- Primary key is what?
- What is the problem with this schema?
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-1234</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-6543</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>San Jose</td>
</tr>
</tbody>
</table>

Anomalies:
- Redundancy = repeat data
- Update anomalies = what if Fred moves to “Oakland”?
- Deletion anomalies = what if Joe deletes his phone number?
Relational Schema Design

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-1234</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-6543</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>San Jose</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Oakland”
- Easy to delete all Joe’s phone numbers
Relational Schema Design (or Logical Design)

• How do we do this systematically?
 – Start with some relational schema
 – Find out its functional dependencies (FDs)
 – Use FDs to normalize the relational schema
Functional Dependencies (FDs)

- $X \rightarrow Y$: ‘X’ functionally **determines** ‘Y’
- Informally: ‘if you know ‘X’, there is only one ‘Y’ to match’
- If t is a tuple in a relation R and A is an attribute of R, then $t[A]$ is the value of attribute A in tuple t

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
Functional Dependencies (FDs)

Formally: \(X \rightarrow Y \Rightarrow (t1[X] = t2[X] \Rightarrow t1[Y] = t2[Y]) \)

if two tuples agree on the ‘X’ attribute, they *must* agree on the ‘Y’ attribute, too (eg., if ids are the same, so should be names)

<table>
<thead>
<tr>
<th>EmplID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
Functional Dependencies (FDs)

X and Y can be sets of attributes

A FD on a relation R is a statement:
– If two tuples in R agree on attributes A_1, A_2, \ldots, A_n then they must also agree on the attribute B_1, B_2, \ldots, B_m
– Notation: $A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m$
Functional Dependencies (FDs)

- A FD is a constraint on a single relational schema
 - It must hold on every instance of the relation
 - You cannot deduce an FD from a relation instance!
 - But you can deduce if an FD does NOT hold using an instance
FD Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

- **EmpID** → Name, Phone, Position
- **Position** → Phone
- **but not** Phone → Position

- 1234 → Clerk
- 1234 → Lawyer
FD Example - 2

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

\[X \rightarrow Y\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

\[X \rightarrow Y\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

\[X \rightarrow Y\]
FD Summary

- FD holds or does not hold on an instance.
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD.
- If we say that R satisfies an FD, we are stating a constraint on R.
Why We Need FDs?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-1234</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>510-555-6543</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>San Jose</td>
</tr>
</tbody>
</table>

Anomalies:
- Redundancy = repeat data
- Update anomalies = what if Fred moves to “Oakland”?
- Deletion anomalies = what if Joe deletes his phone number?
An Interesting Observation

• Workers(ssn, name, lot, did, since)

• If these FDs are true:
 – ssn \(\rightarrow\) did
 – did \(\rightarrow\) lot

• Then this FD also holds:
 – ssn \(\rightarrow\) lot
An Interesting Observation - 2

- If all these FDs are true:
 - name \rightarrow color
 - category \rightarrow department
 - color, category \rightarrow price

- Then this FD also holds:
 - name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn’t mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Finding New FDs: Armstrong’s Axioms (AA)

• Suppose X, Y, Z are sets of attributes, then:
 – Reflexivity: If $X \supseteq Y$, then $X \rightarrow Y$
 – Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 – Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Sound and complete inference rules for FDs!

• Some additional rules (that follow from AA):
 – Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 – Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 – Pseudo-transitivity: If $X \rightarrow Y$ and $YW \rightarrow Z$, then $XW \rightarrow Z$
Armstrong’s Axioms

Prove ‘Union’ from three axioms:

\[
\begin{align*}
X \rightarrow Y & \quad (1) \\
X \rightarrow Z & \quad (2)
\end{align*}
\]

\[
(1) + \text{augm.w / } Z \Rightarrow XZ \rightarrow YZ \quad (3)
\]

\[
(2) + \text{augm.w / } X \Rightarrow XX \rightarrow XZ \quad (4)
\]

but \quad XX is X thus

\[
(3) + (4) \quad \text{and transitivity} \quad \Rightarrow X \rightarrow YZ
\]
Armstrong’s Axioms

Prove Decomposition:

\[
X \rightarrow YZ \Rightarrow \begin{cases}
X \rightarrow Y \\
X \rightarrow Z
\end{cases}
\]

\[
YZ \rightarrow Y \text{ (Reflexivity)}
\]

\[
X \rightarrow Y, \text{ So does } X \rightarrow Z
\]
Armstrong’s Axioms

Prove Pseudo-transitivity:

\[
\begin{align*}
X \rightarrow Y & \\
YW \rightarrow Z & \Rightarrow XW \rightarrow Z
\end{align*}
\]

\[
XW \rightarrow YW \quad Augmentation
\]

\[
XW \rightarrow Z \quad Transitivity
\]
Example

• Relation R: \{ A, B, C \}
• F = \{ A \rightarrow B \text{ and } B \rightarrow C \}
• FDs
 – A \rightarrow C
 – AC \rightarrow BC
 – AB \rightarrow AC
 – AB \rightarrow CB
 – AC \rightarrow B
 – ...
Closure of a set of FDs

- Given a set F of FDs, the set of all FDs is called the **closure of F**, denoted as F^+
- Use Armstrong’s Axioms to find F^+
- Trivial FD: using reflexivity to generate all trivial dependencies
- Non-trivial FD:
 - Using transitivity and augmentation
Examples of Computing Closures of FDs

• Let us include only completely non-trivial FDs in these examples, with a single attribute on the right

• $F = \{A \rightarrow B, B \rightarrow C\}$
 – $\{F\}^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, AC \rightarrow B, AB \rightarrow C\}$

• $F = \{AB \rightarrow C, BC \rightarrow A, AC \rightarrow B\}$
 – $\{F\}^+ = \{AB \rightarrow C, BC \rightarrow A, AC \rightarrow B\}$

• $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
 – $\{F\}^+ = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow C, A \rightarrow D, B \rightarrow D, \ldots\}$
FDs - ‘canonical cover’ Fc

Given a set F of FD (on a schema)
F_c is a **minimal set** of equivalent FDs. Eg.,
takes(ssn, c-id, grade, name, address)
 ssn, c-id -> grade
 ssn-> name, address
 ssn,name-> name, address
 ssn, c-id-> grade, name
FDs - ‘canonical cover’ Fc

\[
\begin{align*}
Fs & = Fc : ssn, c-id \rightarrow grade \\
& \quad ssn \rightarrow name, address \\
& \quad ssn, name \rightarrow name, address \\
& \quad ssn, c-id \rightarrow grade, name
\end{align*}
\]
FDs - ‘canonical cover’ Fc

why do we need it?
 – easier to compute candidate keys
define it properly
compute it efficiently
FDs - ‘minimal cover’ Fc

define it properly - three properties

– 1) the RHS of every FD is a single attribute
– 2) the closure of Fc is identical to the closure of F (ie., Fc and F are equivalent)
– 3) Fc is minimal (ie., if we eliminate any attribute from the LHS or RHS of a FD, property #2 is violated
FDs - ‘minimal cover’ Fc

#3: we need to eliminate ‘extraneous’ attributes. An attribute is ‘extraneous if
– the closure is the same, before and after its elimination
– or if F-before implies F-after and vice-versa
FDs - ‘minimal cover’ Fc

- ssn, c-id -> grade
- ssn-> name, address
- ssn,name-> name, address
- ssn, c-id-> grade, name
FDs - ‘minimal cover’ Fc

Algorithm:
- examine each FD; drop extraneous LHS or RHS attributes; or redundant FDs
- make sure that FDs have a single attribute in their RHS
- repeat until no change
FDs - ‘minimal cover’ Fc

Trace algo for
AB→C (1)
A→BC (2)
B→C (3)
A→B (4)
FDs - ‘minimal cover’ Fc

Trace algo for

AB→C (1)
A→BC (2)
B→C (3)
A→B (4)

split (2):

AB→C (1)
A→B (2')
A→C (2'')
B→C (3)
A→B (4)
FDs - ‘minimal cover’ Fc

AB→C (1)
A→B (2’)
A→C (2’’)
B→C (3)
A→B (4)

AB→C (1)
A→C (2’’)
B→C (3)
A→B (4)
FDs - ‘minimal cover’ Fc

AB->C (1)
A->C (2’’)
B->C (3)
A->B (4)

(2’’): redundant (implied by (4), (3) and transitivity)
FDs - ‘minimal cover’ Fc

AB→C (1)
B→C (3)
A→B (4)

in (1), ‘A’ is extraneous:
(1), (3), (4) imply
(1’), (3), (4), and vice versa

B→C (1’)
B→C (3)
A→B (4)
FDs - ‘minimal cover’ Fc

- $B \rightarrow C$ (1')
- $B \rightarrow C$ (3)
- $A \rightarrow B$ (4)

- nothing is extraneous
- all RHS are single attributes
- final and original set of FDs are equivalent (same closure)
FDs - ‘minimal cover’ Fc

BEFORE

AB->C (1)
A->BC (2)
B->C (3)
A->B (4)

AFTER

B->C (3)
A->B (4)
Attributes Closure

- If we just want to check whether a given dependency $X \rightarrow Y$ is in the closure of a set F of FDs
 - We can just compute the attribute closure X^+ without computing F^+
- Compute attribute closure X^+ with respect to F
 - X^+ is the set of attributes A such that $X \rightarrow A$ is in F^+
Closure of Attributes

Given (INPUT):
- Attributes \{A_1, A_2, \ldots, A_n\}
- Set of FDs \(S\)

Find (OUTPUT):
- \(X = \{A_1, A_2, \ldots, A_n\} +\)
Closure Algorithm

\[X = \{ A_1, \ldots, A_n \} \].

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and \(B_1, \ldots, B_n \) are all in \(X \)

then add \(C \) to \(X \).

Example:

1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

\[\{ \text{name, category} \}^+ = \{ \text{name, category, color, department, price} \} \]

Hence: name, category \(\rightarrow \) color, department, price
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The closure is the set of attributes B, notated $\{A_1, \ldots, A_n\}^+$.

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

- $name^+ = \{\text{name, color}\}$
- $\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
- $\text{color}^+ = \{\text{color}\}$
Example

• Relation R: \{ A, B, C, D, E \}
• \(F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \} \)
• Is \(B \rightarrow E \) in \(F^+ \)?
 – evaluate the closure of \(B \)
 – \(B \rightarrow CD, D \rightarrow E \)
 – \(B^+ = \{ B, C, D, E, …. \} \)
 – Thus \(B \rightarrow E \)
Definition of Keys

• FDs allow us to formally define keys
• A set of attributes \{A1, A2, ..., An\} is a key for relation R if:
 – **Uniqueness**: \{A1, A2, ..., An\} functionally determine all the other attributes of R
 – **Minimality**: no proper set of \{A1, A2, ..., An\} functionally determines all other attributes of R
Definition of Keys

• A superkey is a set of attributes that has the uniqueness property but is not necessarily minimal
 – A1, ..., An → B

• A **candidate key** (or sometimes just key) is a **minimal** superkey

• If a relation has multiple keys, specify one to be primary key

• If a key has only one attribute A, say A rather than \{A\}
Computing (Super) Keys

- For all sets X, compute X^+
- If $X^+ = \{\text{all attributes}\}$, then X is a superkey
- Try reducing to the minimal X’s to get the candidate key
Example

• Product(name, price, category, color)
• FDs
 – name, category \rightarrow price
 – category \rightarrow color
• Candidate key:
 – (name, category)+ = \{ name, category, price, color \}
 – Hence (name, category) is a candidate key
Both algorithms take as input a relation R and a set of FDs F

Closure of FDs:
- Computes \(\{F\}^+ \), the set of all FDs that follow from F
- Output is a set of FDs
- Output may contain an exponential number of FDs

Closure of attributes:
- In addition, takes a set \(\{A_1, A_2, ..., A_n\} \) of attributes as input
- Computes \(\{A_1, A_2, ..., A_n\}^+ \), the set of all attributes B, such that \(A_1 A_2 ... A_n \rightarrow B \) follows from F
- Output is set of all attributes
- Output may contain at most the number of attributes in R
Example

• Relation R: \{ A, B, C, D, E \}
• F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}
• Is D a superkey?
 – evaluate the closure of D
 – B \rightarrow CD, D \rightarrow E
 – D^+ = \{D, E, C\}
• Is AD a superkey?
 – evaluate the closure of AD
 – AD \rightarrow B,
 – AD^+ = \{A, D, E, C, B\}
• Is AD a candidate key?
• Is ADE a candidate key?
Example 2

- Relation R: \{ C, S, J, D, P, Q, V \}
- \(F = \{ JP \rightarrow C, SD \rightarrow P, C \rightarrow CSJDPQV \} \)
- Is SDJ is a key?
 - JP \rightarrow C, C \rightarrow CSJDPQV, so JP is a key
 - SD \rightarrow P, so SDJ \rightarrow JP
 - So SDJ \rightarrow CSJDPQV
- Is SD \rightarrow CSDPQV?
Reading and Next Class

- Functional Dependencies: Ch 19.1-19.3
- Next: BCNF, 3NF and Normalization: Ch 19.4-19.9