
CS 4284

Systems Capstone

Godmar Back

Processes and Threads

Processes & Threads

CS 4284 Fall 2018

Overview

• Definitions

• How does OS execute processes?

– How do kernel & processes interact

– How does kernel switch between processes

– How do interrupts fit in

• What’s the difference between
threads/processes

• Process States

• Priority Scheduling

CS 4284 Fall 2018

Process

• These are all possible definitions:

– A program in execution

– An instance of a program running on a computer

– Schedulable entity (*)

– Unit of resource ownership

– Unit of protection

– Execution sequence (*) + current state (*) + set of

resources

(*) can be said of threads as well

CS 4284 Fall 2018

Alternative definition

• Thread:
– Execution sequence + CPU state (registers + stack)

• Process:
– n Threads + Resources shared by them (specifically:

accessible heap memory, global variables, file
descriptors, etc.)

• In most contemporary OS, n >= 1.

• In Pintos, n=1: a process is a thread – as in
traditional Unix.
– Following discussion applies to both threads &

processes.

CS 4284 Fall 2018

Context Switching

• Multiprogramming: switch to another process if
current process is (momentarily) blocked

• Time-sharing: switch to another process
periodically to make sure all process make equal
progress
– this switch is called a context switch.

• Must understand how it works
– how it interacts with user/kernel mode switching

– how it maintains the illusion of each process having
the a CPU to itself (process must not notice being
switched in and out!)

CS 4284 Fall 2018

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,

context switch to P2

System call: (trap):

P2 starts I/O operation, blocks

context switch to process 1

I/O device interrupt:

P2’s I/O complete

switch back to P2

Timer interrupt: P2 still has

time left, no context switch

CS 4284 Fall 2018

Aside: Kernel Threads

Process 1

Process 2

Kernel

user mode

kernel mode

Most OS (including Pintos) support kernel threads

that never run in user mode – in fact, in Project 1, all

Pintos threads run like that.

Kernel Thread

Careful: “kernel thread” not the same as

kernel-level thread (KLT) – more on KLT later

CS 4284 Fall 2018

Mode Switching: User  Kernel

• Can be for reasons external or internal to CPU

• External (aka hardware) interrupt:

– timer/clock chip, I/O device, network card, keyboard, mouse

– IPI (interprocessor interrupt from another CPU)

– are asynchronous (with respect to the executing program)

• Internal interrupt (aka software interrupt, trap, or exception)

– can be intended: for system call (process wants to enter kernel to
obtain services, via dedicated instructions)

– or unintended (usually): fault/exception (attempt to access
unmapped memory, division by zero, attempt to execute privileged
instruction in user mode, illegal instructions, bus error, alignment
error, etc.)

– are synchronous

• CPU + Kernel code save state of the CPU

CS 4284 Fall 2018

Mode Switching: Kernel  User

• Uses iret instruction

• Kernel must have restored user state, then iret will
restore the user stack and continue the user process in
user mode.

• Side note: Kernel can control the state that should be
restored
– Used for signal delivery, or for bootstrapping (first state that’s

restored is synthetic/fake in that it does not result from a prior
mode switch.)

CS 4284 Fall 2018

Context vs Mode Switching

• Mode switch guarantees kernel gains control
when needed
– To react to external events

– To handle error situations

– Entry into kernel is controlled

• Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of

scheduling

• Mode switch always hardware supported
– Context switch (typically) not – this means many

options for implementing it!

CS 4284 Fall 2018

Implementing Processes

• To maintain illusion, must remember a process’s

information when not currently running

• Process Control Block (PCB)

– Identifier (*)

– Value of registers, including stack pointer (*)

– Information needed by scheduler: process state

(whether blocked or not) (*)

– Resources held by process: file descriptors, memory

pages, etc.

(*) applies to TCB (thread control block) as well

CS 4284 Fall 2018

PCB vs TCB

• In 1:1 systems (Pintos), TCB==PCB

– struct thread

– add information there as projects progress

• In 1:n systems:

– TCB contains execution state of thread +

scheduling information + link to PCB for

process to which thread belongs

– PCB contains identifier, plus information

about resources shared by all threads

struct thread

{

tid_t tid; /* Thread identifier. */

enum thread_status status; /* Thread state. */

char name[16]; /* Name. */

uint8_t *stack; /* Saved stack pointer. */

struct list_elem elem; /* List element. */

/* others you’ll add as needed. */

};

IMPLEMENTING CONTEXT

SWITCHES

CS 4284 Fall 2018

CS 4284 Fall 2018

Steps in context switch: high-level

• Save the current process’s execution state

to its PCB

• Update current’s PCB as needed

• Choose next process N

• Update N’s PCB as needed

• Restore N’s PCB execution state

– May involve reprogramming MMU

CS 4284 Fall 2018

Execution State

• Saving/restoring execution state is highly tricky:

– Must save state without destroying it

• Registers

– On x86: eax, ebx, ecx, …

• Stack

– Special area in memory that holds activation records:

e.g., the local (automatic) variables of all function

calls currently in progress

– Saving the stack means retaining that area & saving a

pointer to it (“stack pointer” = esp)

CS 4284 Fall 2018

The Stack, seen from C/C++

• Q.: which of these variables are stored on
the stack, and which are not?

int a;

static int b;

int c = 5;

struct S

{

int t;

} s;

void func(int d)

{

static int e;

int f;

struct S w;

int *g = new int[10];

}

A.: On stack: d, f, w (including w.t), g

Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

CS 4284 Fall 2018

Switching Procedures

• Inside kernel, context switch is implemented in

some procedure (function) called from C code

– Appears to caller as a procedure call

• Must understand how to switch procedures

(call/return)

• Procedure calling conventions

– Architecture-specific

– Defined by ABI (application binary interface),

implemented by compiler

– Pintos uses SVR4 ABI

CS 4284 Fall 2018

x86 Calling Conventions

• Caller saves caller-saved
registers as needed

• Caller pushes arguments,
right-to-left on stack via push
assembly instruction

• Caller executes CALL
instruction: save address of
next instruction & jump to
callee

• Caller resumes: pop
arguments off the stack

• Caller restores caller-saved
registers, if any

• Callee executes:

– Saves callee-saved

registers if they’ll be

destroyed

– Puts return value (if any) in

eax

• Callee returns: pop return

address from stack & jump to it

CS 4284 Fall 2018

Example

int globalvar;

int

callee(int a, int b)

{

return a + b;

}

int

caller(void)

{

return callee(5, globalvar);

}

callee:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

leave

ret

caller:

pushl %ebp

movl %esp, %ebp

pushl globalvar

pushl $5

call callee

popl %edx

popl %ecx

leave

ret

CS 4284 Fall 2018

Pintos Context Switch (1)

• threads/thread.c, threads/switch.S

static void

schedule (void)

{

struct thread *cur = running_thread ();

struct thread *next = next_thread_to_run ();

struct thread *prev = NULL;

if (cur != next)

prev = switch_threads (cur, next);

retlabel: /* not in actual code */

thread_schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

Stack
…

next

cur

&retlabelesp

CS 4284 Fall 2018

Pintos Context Switch (2)
switch_threads:

Save caller's register state.

Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,

but requires us to preserve %ebx, %ebp, %esi, %edi.

pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).

mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.

movl SWITCH_CUR(%esp), %eax

movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.

movl SWITCH_NEXT(%esp), %ecx

movl (%ecx,%edx,1), %esp

Restore caller's register state.

popl %edi; popl %esi; popl %ebp; popl %ebx

ret

Stack
…

next

cur

&retlabelesp

Stack
…

next

cur

&retlabel

ebx

ebp

esi

ediesp

#define SWITCH_CUR 20

#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

// switch_thread (struct thread *cur, struct thread *next)

CS 4284 Fall 2018

Famous

Quote For

The Day

• Source: Dennis Ritchie, Unix V6 slp.c (context-

switching code) as per The Unix Heritage

Society (tuhs.org); gif by Eddie Koehler.

If the new process paused because it was swapped out,

set the stack level to the last call to savu(u_ssav). This

means that the return which is executed immediately

after the call to aretu actually returns from the last

routine which did the savu.

You are not expected to understand this.

http://wiki.tuhs.org/doku.php?id=anecdotes:not_expected_to_understand_this

Side Note

• If you read the full text of the “You are not

expected to understand this” you’ll learn

that the code given was actually broken

because it depended on a specific

compiler and disregarded procedure

calling conventions with respect to register

saving.

CS 4284 Fall 2018

http://wiki.tuhs.org/doku.php?id=anecdotes:not_expected_to_understand_this

CS 4284 Fall 2018

Pintos Context Switch (3)

• All state is stored on outgoing thread’s stack, and
restored from incoming thread’s stack
– Each thread has a 4KB page for its stack

– Called “kernel stack” because it’s only used when thread
executes in kernel mode

– Mode switch automatically switches to kernel stack
• x86 does this in hardware, curiously.

• switch_threads assumes that the thread that’s switched
in was suspended in switch_threads as well.
– Must fake that environment when switching to a thread for the

first time.

• Aside: none of the thread switching code uses privileged
instructions:
– that’s what makes user-level threads (ULT) possible

CS 4284 Fall 2018

Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |

| | |

| | |

| V |

| grows downward |

| ... |

| ... |

| switch_threads’s |

| stack frame <---+ |

| | |

| | |

| | |

| | |

+----------------------+----------+

| magic | |

| : | |

| stack---+ |

| name |

| status |

0 kB +---------------------------------+

• One page of
memory captures
a process’s kernel
stack + PCB

• Don’t allocate
large objects on
the stack:
void

kernel_function(void)

{

char buf[4096]; // DON’T

// KERNEL STACK OVERFLOW

// guaranteed

}

CS 4284 Fall 2018

Context Switching, Take 2

Process 1

Process 2

Kernel

user mode

kernel mode

intr_entry:

(saves entire CPU state)

(switches to kernel stack) intr_exit:

(restore entire CPU state)

(switch back to user stack)

iret

switch_threads: (in)

(saves caller’s state)

switch_threads: (out)

(restores caller’s state)
(kernel stack switch)

CS 4284 Fall 2018

External Interrupts & Context Switches
intr_entry:

/* Save caller's registers. */

pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */

cld

mov $SEL_KDSEG, %eax /* Initialize segment registers. */

mov %eax, %ds; mov %eax, %es

leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp

call intr_handler /* Call interrupt handler. Context switch happens in there*/

addl $4, %esp

/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */

/* Restore caller's registers. */

popal; popl %gs; popl %fs; popl %es; popl %ds

iret /* Return to current process, or to new process after context switch. */

CS 4284 Fall 2018

Context Switching: Summary

• Context switch means to save the current and

restore next process’s execution context

• Context Switch != Mode Switch

– Although mode switch often precedes context switch

• Asynchronous context switch happens in

interrupt handler

– Usually last thing before leaving handler

• Have ignored so far when to context switch &

why  next

PROCESS STATES & EVENTS

CS 4284 Fall 2018

CS 4284 Fall 2018

Process States

• Only 1 process (per CPU) can be in RUNNING state

RUNNING

READYBLOCKED

Process

must wait

for event

Event arrived

Scheduler

picks process

Process

preempted

CS 4284 Fall 2018

Process Events

• What’s an event?

– External event:

• disk controller completes sector transfer to memory

• network controller signals that new packet has been received

• clock has advanced to a predetermined time

– Events that arise from process interaction:

• a resource that was previously held by some process is now

available (e.g., lock_release)

• an explicit signal is sent to a process (e.g., cond_signal)

• a process has exited or was killed

• a new process has been created

CS 4284 Fall 2018

Process Lists

• All ready processes are inserted in a “ready list”
data structure
– Running process typically not kept on ready list

– Can implement as multiple (real) ready lists, e.g., one
for each priority class

• All blocked processes are kept on lists
– List usually associated with event that caused

blocking – usually one list per object that’s causing
events

• Most of scheduling involves simple and clever
ways of manipulating lists (r/b trees nowadays)

SCHEDULING CONCEPTS &

POLICIES

CS 4284 Fall 2018

CS 4284 Fall 2018

Priority Based Scheduling

• Done in Linux (pre 2.6.23), Windows, (previous
semester) Pintos

MIN

MAX
H

ig
h
e
r

P
ri
o
ri
ty

2

3

6

Only threads with the highest priority run

If more than one, round-robin

CS 4284 Fall 2018

Priority Based Scheduling (2)

• Advantage:
– Dead simple: the highest-priority process runs

– Q.: what is the complexity of finding which process that is?

• Disadvantage:
– Not fair: lower-priority processes will never run

– Hence, must adjust priorities somehow

• Many schedulers used in today’s general purpose
and embedded OS work like this
– Only difference is how/whether priorities are adjusted to

provide fairness and avoid starvation

– Exception: Linux “completely-fair scheduler” uses different
scheme which project 1 is based on

CS 4284 Fall 2018

Reasons for Preemption

• Generally two: quantum expired or change
in priorities

• Reason #1:

– A process of higher importance than the one
that’s currently running has just become ready

• Reason #2:

– Time Slice (or Quantum) expired

• Question: what’s good about long vs. short
time slices?

CS 4284 Fall 2018

I/O Bound vs CPU Bound Procs

• Processes that usually exhaust their

quanta are said to be CPU bound

• Processes that frequently block for I/O are

said to be I/O bound

• Q.: what are examples of each?

• What policy should a scheduler use to

juggle the needs of both?

CS 4284 Fall 2018

Process States w/ Suspend

• Can be useful sometimes to suspend processes
– By user request: ^Z in Linux shell/job control

– By OS decision: swapping out entire processes
(Solaris & Windows do that, Linux doesn’t)

CS 4284 Fall 2018

Windows XP

• Thread state diagram
in an industrial kernel

• Source: Dave
Probert, Windows
Internals – Copyright
Microsoft 2003

Initialized

Ready

Terminated Running

Standby

Deferred
Ready

Waiting

KeInitThread

KeTerminateThread

Transition
k stack

swapped

KiUnwaitThread
KiReadyThread

KiQuantumEnd
KiIdleSchedule
KiSwapThread
KiExitDispatcher
NtYieldExecution

Kernel Thread Transition Diagram

DavePr@Microsoft.com

2003/04/06 v0.4b

Idle

processor

or

preemption

KiInsertDeferredReadyList

preemption

preemption

KiRetireDpcList/KiSwapThread/
KiExitDispatcher
KiProcessDeferredReadyList
KiDeferredReadyThread

no avail.

processor

KiSelectNextThread

PspCreateThread
KiReadyThread
KiInsertDeferredReadyList

Affinity

ok

Affinity

not ok

KiSetAffinityThread
KiSetpriorityThread

Ready
process
swapped

KiReadyThread

CS 4284 Fall 2018

Windows XP

• Priority scheduler
uses 32 priorities

• Scheduling class
determines range in
which priority are
adjusted

• Source: Microsoft®
Windows® Internals,
Fourth Edition:
Microsoft Windows
Server™

