
Application Layer 1

Threads & LocksThreads & Locks

Srinidhi Varadarajan

TopicsTopics

� Thread Programming (Chapter 12)
– Advantages/Disadvantages
– Mutex Locks
– Semaphore Locks
– Condition Variables

� File Locking Mechanisms

Advantages of threadsAdvantages of threads
� Lower context switching overhead

� Shared state.
– Allows concurrent instances of the server to

communicate easily with each other

� Linux supports the POSIX threads standard.
– PTHREADS library
– Portable across most UNIX platforms.
– FSF project has largely ported pthreads to windows

platforms as well.

Disadvantages of ThreadsDisadvantages of Threads

� Shared state
– Global variables are shared between threads:

Inadvertent modification of shared variables
can be disastrous

� Many library functions are not thread safe.
– Library functions that return pointers to

internal static arrays are not thread safe. E.g.
gethostbyname() used for DNS lookup

� Lack of robustness: If one thread crashes,
the whole application crashes

Thread stateThread state

� Each thread has its own stack and local
variables

� Globals are shared.
� File descriptors are shared. If one thread

closes a file, all other threads can’t use
the file

� I/O operations block the calling thread.
– Some other functions act on the whole

process. For example, the exit() function
operates terminates the entire and all
associated threads.

Thread Synchronization: Thread Synchronization: MutexMutex
� How can a thread ensure that access/updates to

shared variables is atomic?
� How can a thread ensure that it is the only thread

executing some critical piece of code?
– Need a mechanism for thread coordination and

synchronization
– Enter semaphores and mutex calls

� Mutex: Mutual Exclusion Lock.
– Threads can create a mutex and initialize it. Before

entering a critical region, lock the mutex.
– Unlock the mutex after exiting the critical region

Application Layer 2

Thread Synchronization: SemaphoresThread Synchronization: Semaphores

� A mutex allows one thread to enter a
critical region. A semaphore can allow
some N threads to enter a critical region.
– Used when there is a limited (but more than 1)

number of copies of a shared resource.
� Can be dynamically initialized.

– Thread calls a semaphore wait function before
it enters a critical region.

� Semaphore is a generalization of a mutex.

Conditional VariablesConditional Variables
� A set of threads use a mutex to allow

serial access to a critical region.
� Once a thread enters a critical region, it

needs to check for a condition to occur
before proceeding.
– This scenario is prone to deadlocks. A thread

can’t busy wait checking for the condition.
Why? (Hint: what if the condition is set within
a mutex protected region)

� Wasteful solution:
– Thread enters mutex region, checks

condition. If condition has not occurred,
release mutex and repeat the process after
some time

Conditional VariablesConditional Variables
� A condition variable allows a thread to

release a mutex and block on a condition
atomically.

� When the condition is signaled, the
thread is allowed to reacquire the mutex
and proceed.
– Two forms of signaling exist based on how

many threads are blocked on the condition.
– Either one thread may be allowed to proceed

or all threads blocked on the condition are
allowed to proceed.

File LockingFile Locking

� File locking functions allow you to:
– Lock entire files for exclusive use
– Lock regions in a file
– Test for locks held by other programs

� Function:
– flock(int fd, int operation) where operation is:

• LOCK_SH: Shared Lock
• LOCK_EX: Exclusive Lock.
• LOCK_UN: Unlock
• LOCK_NB: Non blocking lock. Returns –ve result if

lock can’t be obtained

Record LockingRecord Locking

� The flock function locks the entire file. Record
locking can be used to lock regions within a file

� Record locking uses the flock structure.

#include <sys/types.h>

#include <unistd.h>
#include <fcntl.h>

struct flock {
off_t l_start; /* starting offset */

off_t l_len; /* len = 0 means until EOF */
pid_t l_pid; /* lock owner */
short l_type; /* F_RDLCK, F_WRLCK, F_UNLCK*/

short l_whence; /* type of l_start */
};

Record LockingRecord Locking
Type of lock desired: (l_type)

F_RDLCK: A shared read lock
F_WRLCK: An exclusive write lock
F_UNLCK: Unlocking a region

Lock l_len bytes starting from
(l_whence + l_start)

l_whence: SEEK_SET, SEEK_CUR,
SEEK_END

To lock entire file set: l_start to 0, l_whence
to SEEK_SET, and l_len to 0.

Application Layer 3

Record LockingRecord Locking
� int fcntl(int filedes, int cmd,
struct flock *lock);

� filedes: File descriptor
� cmd:

– F_GETLK: Returns the lock struct of the lock preventing a
file lock or sets the l_type to F_UNLCK on no obstruction

– F_SETLK: Non-Blocking call to lock or unlock a region.
Depends on the command inside the flock struct. Returns
–1 if lock is held by someone else

– F_SETLKW: Blocking version of F_SETLK
� struct flock *lock

Record Locking: ExampleRecord Locking: Example
struct flock lock;

FILE* myFile;

int fd;

if((fd = creat("templock", FILE_MODE)) < 0)

/* error */;

lock.l_len = 0;

lock.l_start = 0;

lock.l_whence = SEEK_SET;

lock.l_type = F_WRLCK;

fcntl(fd, F_SETLKW, lock);

myFile = fopen("mylog", "a");

fprintf(myFile, "Write\n");

fclose(myFile);

lock_l_type = F_UNLCK;

fcntl(fd, F_SETLKW, lock);

