
Application Layer 1

Client Server ProgrammingClient Server Programming

Srinidhi Varadarajan

Network ApplicationsNetwork Applications

l There are many network applications
– Network applications involve the cooperation

of processes running on different hosts
connected by a network

l Applications may be “standard” or custom
applications
– Internet applications are typically defined in

one or more Request for Comments (RFCs)
• HTTP defined in RFC 1945

– May be standard, drafts, or informational

Port AssignmentPort Assignment
l UDP and TCP ports are used to distinguish

between multiple applications on one host
l Standard numbering for “well-known port

numbers”
– Defined in RFC 1700 for “standard” Internet

applications
– Configured in various places specific to the

operating system and in the application itself
• Windows 95/98: \Windows\services
• NT: Systemroot\System32\Drivers\Etc\services
• UNIX: /etc/services

Sample From /etc/servicesSample From /etc/services
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
qotd 17/udp quote
chargen 19/tcp ttytst source
chargen 19/udp ttytst source

Service User Versus Service ProviderService User Versus Service Provider

Request

Response

CLIENT

User

User User

There may be multiple
users of one provider

n Server runs awaiting
requests and responds
when requests are
received

n Client issues requests
to server and accepts
response

SERVER

Provider

Concurrency at the ServerConcurrency at the Server
l Many servers provide concurrent

operation
– Apparent concurrency using asynchronous

socket I/O
– True (program-level) concurrency using

multithreaded design
l Concurrency adds complexity!
l When is concurrency justified?

– Need to simultaneously handle multiple
requests

– Need to increase performance

Application Layer 2

Example Standard Service: TELNETExample Standard Service: TELNET
l TELNET is a standard application protocol

for remote login
– Defines format of data sent by application

program to remote machine and by remote
machine to the application

– Defines character encoding
– Defines special messages to control the

session
l telnetd is server running on the remote

host (at port 23)
l Client is the application program on the

local host, e.g. CRT or other TELNET
client

TELNET to Access Alternative ServicesTELNET to Access Alternative Services

lA TELNET client can be used to
access alternative servers
– Simple text transfer -- so can access

general text based services
– Typical TELNET clients can be

configured to access different remote
ports

– Of course, other clients are designed to
provide a better user interface

PeerPeer--toto--Peer Communication ModelPeer Communication Model

l TCP/IP suite supports peer-to-peer
communication

l Peer-to-peer communication is symmetric
– Any node can initiate or terminate

communication
– Communication can occur in either direction

l There are no implications of …
– When applications should interact
– Meaning of data -- they’re just bytes
– Structure of a networked application

Connection Request

Datagram

ApplicationApplication--Level ModelLevel Model

l Higher level model needed to implement
networked applications

l TCP and UDP require that a program be
available to accept a connection request
(TCP) or a datagram (UDP)

l Client-server model is widely used to
provide a workable structure

Client Server

ClientClient--Server ModelServer Model

l Client initiates peer-to-peer
communication (at TCP- or UDP-level)

l Server waits for incoming request

CLIENT SERVER

Request

Response

Clients Versus ServersClients Versus Servers

l Clients
– Relatively simple (with respect to network

communication)
– User-level programs that require no special

privileges
l Servers

– More complex than servers due to
performance and security requirements

– Often require special system privileges
– May run all the time or be started on-demand

by operating system mechanisms, e.g. inetd in
UNIX

Application Layer 3

PrivilegePrivilege

l Server often runs in a privileged mode, so
must protect improper use of privileges by
a client
– Authentication: verify identity of the client
– Authorization: verify permission to access

service
– Data security and privacy: prevent

unauthorized viewing or altering of data
– Protection: protect system resources from

misuse

Client ParameterizationClient Parameterization

l Parameterized clients lead to generality,
e.g. as in TELNET client being able to
access other services

l Parameters
– Destination host

• Host name: vtopus .cs.v t.edu
• IP address: 128.173.40.24

– Port number (not just default)
– Protocol- or application-specific information,

e.g. block size
– Protocol itself, e.g. FTP, HTTP, or Gopher

Universal Resource Locators (1)Universal Resource Locators (1)

lURLs integrate many parameters

http://khg.redhat.com:8080/LDP/kernel.html

host
port
resource

protocol

Universal Resource Locators (2)Universal Resource Locators (2)

ftp://ftp.cs.purdue.edu/pub/comer/

(default FTP port)
host

resource

protocol

Connectionless/ConnectionConnectionless/Connection--oriented (1)oriented (1)

lConnection-oriented servers
– Client must first connect to the server

prior to any data transfer
– Based on TCP (usually) -- reliable at the

expense of connection overhead
• Data arrives correctly
• Data ordering is maintained
• Data is not duplicated

Connectionless/ConnectionConnectionless/Connection--oriented (2)oriented (2)

lConnectionless servers
– Data can be sent by clients immediately
– Based on UDP (usually) -- no

connection overhead, but no benefits
• Data may not arrive
• Data may be incorrect, although unlikely
• Duplicates may arrive, although unlikely
• May arrive out of order, although unlikely

Application Layer 4

Connectionless/ConnectionConnectionless/Connection--oriented (3)oriented (3)

l Connectionless vs. connection-oriented
design issues
– Inherent reliability?
– Reliability needed?
– Reliability is already very high (LAN vs. WAN)?
– Real-time operation gives no time for error

correction (retransmission)?
– Need for broadcast or multicast?

l Need to test in a variety of environments
– Packet delay
– Packet loss

Stateless/Stateless/StatefulStateful

l State information is any information about
ongoing interactions

l Stateful servers maintain state information
l Stateless servers keep no state

information
l Examples -- stateful or stateless?

– Finger?
– TELNET?
– HTTP?
– FTP?
– NFS?

File Server ExampleFile Server Example

lConsider a file server that supports
four operations
– OPEN -- identify file and operation, e.g.

read or write
– READ -- identify file, location in file,

number of bytes to read
– WRITE -- identify file, location in file,

number of bytes, data to write
– CLOSE -- identify file

File Server Example: StatelessFile Server Example: Stateless

l Stateless version -- identify all information
with each request

l Example
– OPEN(/tmp/test.txt, “r”)
– READ(/tmp/test.txt, 0, 200)
– READ(/tmp/test.txt, 200, 200)

l Redundant information is provided with
subsequent requests
– Inefficient with respect to information transfer
– Server operation is simplified

File Server Example: File Server Example: Stateful Stateful (1)(1)

l Stateful version -- server provides handle
to access state at the server

l File open
– Request: OPEN(/tmp/test.txt, “r”)
– Reply: OPEN(ok, 32) -- handle = 32
– State: 32: /tmp/test.txt, 0, read

l File read
– Request: READ(32, 200)
– Reply: READ(ok, data)
– State: 32: /tmp/test.txt, 200, read

File Server Example:File Server Example: Stateful Stateful (2)(2)

l What if there is a duplicate request?
– READ(32, 200) sent once, but received twice
– Client and server lose synchronization --

server thinks that 400 bytes have been read,
client thinks it has read just 200 bytes

l Stateful servers are more complex than
stateless servers since they must deal
with synchronization

l State is implied by the protocol, not the
implementation
– TCP is a stateful protocol
– Synchronization required with byte numbers

Application Layer 5

Stateful Stateful Protocol Design IssuesProtocol Design Issues

l Time-outs
lDuplicate requests and replies
l System crashes (at one end)
lMultiple clients
l File locking

Concurrency in Network ApplicationsConcurrency in Network Applications

l Concurrency is real or apparent
simultaneous computing
– Real in a multiprocessor
– Apparent in a time-shared uniprocessor

(apparent concurrency provided by OS)

l Networks are inherently concurrent --
multiple hosts have the appearance of
simultaneously transferring data
– Real, to some extent, in switched networks
– Apparent in shared media networks (apparent

concurrency provided by MAC protocol)

Client ConcurrencyClient Concurrency

l Clients usually make use of concurrency
in a trivial way
– Multiple clients can run on a single processor

l Such concurrency is provided by the
operating system, not by any programmed
features of the client

l Note that complex clients can use
concurrency, e.g. modern Web browser
– Simultaneous requests and receipt of multiple

files
– Overlapping communication with graphical

rendering or other processing

Server Concurrency (1)Server Concurrency (1)

Client 1

Client 2

Client 4

Client 3
Server

Network

Server Concurrency (2)Server Concurrency (2)
l Servers use concurrency to achieve

functionality and performance
l Concurrency is inherent in the server --

must be explicitly considered in server
design

l Exact design and mechanisms depend on
support provided by the underlying
operating system

l Achieved through
– Concurrent processes
– Concurrent threads

ProcessesProcesses

l Process: fundamental unit of computation
– Per process information:

• Owner of process
• Program being executed
• Program and data memory areas
• Run-time stack for procedure activation
• Instruction pointer
• Allocated resources, e.g. file and socket descriptors

l A program implies just the code, a
process includes the concept of the active
execution of the code

Application Layer 6

Concurrent ExecutionConcurrent Execution

l Concurrent execution: executing a piece
of code more than once at apparently the
same time

l If a program is executed multiple times at
apparently the same time
– Each invocation is a unique process
– Each invocation has its own unique per

process information, such as distinct
instruction pointer, program and data memory,
resources, etc.

ThreadsThreads
l Threads are another form of concurrent

execution within a process
– Each thread has its own:

• Instruction pointer
• Copy of local variables
• Run-time stack for procedure activation

– Multiple threads can be associated with a
single process

– All threads within a process share:
• Process owner
• Program being executed
• Program and global data memory
• Allocated resources

Processes Versus ThreadsProcesses Versus Threads

l Both provide mechanisms for concurrent
execution

l Advantages of threads
– Allocated resources and global data are easily

shared
– Typically lower overhead for creation and

switching (but not zero overhead)
l Advantages of multiple processes

– Inherent separation (isolation) makes
interaction clearer

– More widely supported on different operating
systems; common mechanisms

Context SwitchingContext Switching

lContext switching is the operation of
changing from the execution of one
process or thread to another
– Overhead incurred with each context

switch
– Context switch for threads requires less

overhead than for processes
• Threads are “lightweight processes”

Mutual ExclusionMutual Exclusion

l Threads do share allocated resources
(files, sockets, etc.) and global memory

l So, some form of mutual exclusion is
needed to ensure that only a single thread
has use of a particular resource at any
given time

l Mutual exclusion can be implemented
using a “test and set” operation on a true-
false value

Semaphore OperationSemaphore Operation

sem

sem ← true

actions

sem ← false

TRUE
(wait)

FALSE (not in use)

n Semaphore is variable
sem
l TRUE ⇒ in use
l FALSE ⇒ not in use

n Semaphore (sem) is first
initialized to FALSE

n Test-and-set must be an
“indivisible” or “atomic”
operation

Application Layer 7

Apparent Concurrency (1)Apparent Concurrency (1)

l Threads allow concurrency to be
implemented at the application level

l Apparent concurrency is also possible
where server appears to be
simultaneously serving requests, but is
doing this with a single thread

l Based on asynchronous I/O
– Synchronous I/O is blocking -- a call blocks

until the source is ready
– Asynchronous I/O is non-blocking

Apparent Concurrency (2)Apparent Concurrency (2)

l select() call
– Allows a program to select between

multiple services and returns when one
becomes active

– Basis for apparent concurrency

You should now be able to … (1)You should now be able to … (1)

l Specify general design requirements for
clients and servers

l Characterize application protocols with
respect to
– Connection versus connection-less
– Stateful versus stateless

l Identify design issues related to use of
stateful and stateless protocols

l Identify the need for concurrent execution

You should now be able to … (2)You should now be able to … (2)

l Identify the properties of threads and
processes
l Identify design issues related to the

use of threads versus processes
l Identify the difference between

concurrent execution with threads
and apparent concurrency

