
Client Server ProgrammingClient Server Programming

Srinidhi Varadarajan

Network ApplicationsNetwork Applications

l There are many network applications
– Network applications involve the cooperation

of processes running on different hosts
connected by a network

l Applications may be “standard” or custom
applications
– Internet applications are typically defined in

one or more Request for Comments (RFCs)
• HTTP defined in RFC 1945

– May be standard, drafts, or informational

Port AssignmentPort Assignment
l UDP and TCP ports are used to distinguish

between multiple applications on one host
l Standard numbering for “well-known port

numbers”
– Defined in RFC 1700 for “standard” Internet

applications
– Configured in various places specific to the

operating system and in the application itself
• Windows 95/98: \Windows\services
• NT: Systemroot\System32\Drivers\Etc\services
• UNIX: /etc/services

Sample From /etc/servicesSample From /etc/services
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
qotd 17/udp quote
chargen 19/tcp ttytst source
chargen 19/udp ttytst source

Service User Versus Service ProviderService User Versus Service Provider

Request

Response

CLIENT

User

User User

There may be multiple
users of one provider

n Server runs awaiting
requests and responds
when requests are
received

n Client issues requests
to server and accepts
response

SERVER

Provider

Concurrency at the ServerConcurrency at the Server
l Many servers provide concurrent

operation
– Apparent concurrency using asynchronous

socket I/O
– True (program-level) concurrency using

multithreaded design
l Concurrency adds complexity!
l When is concurrency justified?

– Need to simultaneously handle multiple
requests

– Need to increase performance

Example Standard Service: TELNETExample Standard Service: TELNET
l TELNET is a standard application protocol

for remote login
– Defines format of data sent by application

program to remote machine and by remote
machine to the application

– Defines character encoding
– Defines special messages to control the

session
l telnetd is server running on the remote

host (at port 23)
l Client is the application program on the

local host, e.g. CRT or other TELNET
client

TELNET to Access Alternative ServicesTELNET to Access Alternative Services

l A TELNET client can be used to
access alternative servers
– Simple text transfer -- so can access

general text based services
– Typical TELNET clients can be

configured to access different remote
ports

– Of course, other clients are designed to
provide a better user interface

PeerPeer--toto--Peer Communication ModelPeer Communication Model

l TCP/IP suite supports peer-to-peer
communication

l Peer-to-peer communication is symmetric
– Any node can initiate or terminate

communication
– Communication can occur in either direction

l There are no implications of …
– When applications should interact
– Meaning of data -- they’re just bytes
– Structure of a networked application

Connection Request

Datagram

ApplicationApplication--Level ModelLevel Model

l Higher level model needed to implement
networked applications

l TCP and UDP require that a program be
available to accept a connection request
(TCP) or a datagram (UDP)

l Client-server model is widely used to
provide a workable structure

Client Server

ClientClient--Server ModelServer Model

l Client initiates peer-to-peer
communication (at TCP- or UDP-level)

l Server waits for incoming request

CLIENT SERVER

Request

Response

Clients Versus ServersClients Versus Servers

l Clients
– Relatively simple (with respect to network

communication)
– User-level programs that require no special

privileges
l Servers

– More complex than servers due to
performance and security requirements

– Often require special system privileges
– May run all the time or be started on-demand

by operating system mechanisms, e.g. inetd in
UNIX

PrivilegePrivilege

l Server often runs in a privileged mode, so
must protect improper use of privileges by
a client
– Authentication: verify identity of the client
– Authorization: verify permission to access

service
– Data security and privacy: prevent

unauthorized viewing or altering of data
– Protection: protect system resources from

misuse

Client ParameterizationClient Parameterization

l Parameterized clients lead to generality,
e.g. as in TELNET client being able to
access other services

l Parameters
– Destination host

• Host name: vtopus.cs.vt.edu
• IP address: 128.173.40.24

– Port number (not just default)
– Protocol- or application-specific information,

e.g. block size
– Protocol itself, e.g. FTP, HTTP, or Gopher

Universal Resource Locators (1)Universal Resource Locators (1)

l URLs integrate many parameters

http://khg.redhat.com:8080/LDP/kernel.html

host
port
resource

protocol

Universal Resource Locators (2)Universal Resource Locators (2)

ftp://ftp.cs.purdue.edu/pub/comer/

(default FTP port)
host

resource

protocol

Connectionless/ConnectionConnectionless/Connection--oriented (1)oriented (1)

l Connection-oriented servers
– Client must first connect to the server

prior to any data transfer
– Based on TCP (usually) -- reliable at the

expense of connection overhead
• Data arrives correctly
• Data ordering is maintained
• Data is not duplicated

Connectionless/ConnectionConnectionless/Connection--oriented (2)oriented (2)

l Connectionless servers
– Data can be sent by clients immediately
– Based on UDP (usually) -- no

connection overhead, but no benefits
• Data may not arrive
• Data may be incorrect, although unlikely
• Duplicates may arrive, although unlikely
• May arrive out of order, although unlikely

Connectionless/ConnectionConnectionless/Connection--oriented (3)oriented (3)

l Connectionless vs. connection-oriented
design issues
– Inherent reliability?
– Reliability needed?
– Reliability is already very high (LAN vs. WAN)?
– Real-time operation gives no time for error

correction (retransmission)?
– Need for broadcast or multicast?

l Need to test in a variety of environments
– Packet delay
– Packet loss

Stateless/Stateless/StatefulStateful

l State information is any information about
ongoing interactions

l Stateful servers maintain state information
l Stateless servers keep no state

information
l Examples -- stateful or stateless?

– Finger?
– TELNET?
– HTTP?
– FTP?
– NFS?

File Server ExampleFile Server Example

l Consider a file server that supports
four operations
– OPEN -- identify file and operation, e.g.

read or write
– READ -- identify file, location in file,

number of bytes to read
– WRITE -- identify file, location in file,

number of bytes, data to write
– CLOSE -- identify file

File Server Example: StatelessFile Server Example: Stateless

l Stateless version -- identify all information
with each request

l Example
– OPEN(/tmp/test.txt, “r”)
– READ(/tmp/test.txt, 0, 200)
– READ(/tmp/test.txt, 200, 200)

l Redundant information is provided with
subsequent requests
– Inefficient with respect to information transfer
– Server operation is simplified

File Server Example: File Server Example: Stateful Stateful (1)(1)

l Stateful version -- server provides handle
to access state at the server

l File open
– Request: OPEN(/tmp/test.txt, “r”)
– Reply: OPEN(ok, 32) -- handle = 32
– State: 32: /tmp/test.txt, 0, read

l File read
– Request: READ(32, 200)
– Reply: READ(ok, data)
– State: 32: /tmp/test.txt, 200, read

File Server Example:File Server Example: Stateful Stateful (2)(2)

l What if there is a duplicate request?
– READ(32, 200) sent once, but received twice
– Client and server lose synchronization --

server thinks that 400 bytes have been read,
client thinks it has read just 200 bytes

l Stateful servers are more complex than
stateless servers since they must deal
with synchronization

l State is implied by the protocol, not the
implementation
– TCP is a stateful protocol
– Synchronization required with byte numbers

Stateful Stateful Protocol Design IssuesProtocol Design Issues

l Time-outs
l Duplicate requests and replies
l System crashes (at one end)
lMultiple clients
l File locking

Concurrency in Network ApplicationsConcurrency in Network Applications

l Concurrency is real or apparent
simultaneous computing
– Real in a multiprocessor
– Apparent in a time-shared uniprocessor

(apparent concurrency provided by OS)

l Networks are inherently concurrent --
multiple hosts have the appearance of
simultaneously transferring data
– Real, to some extent, in switched networks
– Apparent in shared media networks (apparent

concurrency provided by MAC protocol)

Client ConcurrencyClient Concurrency

l Clients usually make use of concurrency
in a trivial way
– Multiple clients can run on a single processor

l Such concurrency is provided by the
operating system, not by any programmed
features of the client

l Note that complex clients can use
concurrency, e.g. modern Web browser
– Simultaneous requests and receipt of multiple

files
– Overlapping communication with graphical

rendering or other processing

Server Concurrency (1)Server Concurrency (1)

Client 1

Client 2

Client 4

Client 3
Server

Network

Server Concurrency (2)Server Concurrency (2)

l Servers use concurrency to achieve
functionality and performance

l Concurrency is inherent in the server --
must be explicitly considered in server
design

l Exact design and mechanisms depend on
support provided by the underlying
operating system

l Achieved through
– Concurrent processes
– Concurrent threads

ProcessesProcesses

l Process: fundamental unit of computation
– Per process information:

• Owner of process
• Program being executed
• Program and data memory areas
• Run-time stack for procedure activation
• Instruction pointer
• Allocated resources, e.g. file and socket descriptors

l A program implies just the code, a
process includes the concept of the active
execution of the code

Concurrent ExecutionConcurrent Execution

l Concurrent execution: executing a piece
of code more than once at apparently the
same time

l If a program is executed multiple times at
apparently the same time
– Each invocation is a unique process
– Each invocation has its own unique per

process information, such as distinct
instruction pointer, program and data memory,
resources, etc.

ThreadsThreads

l Threads are another form of concurrent
execution within a process
– Each thread has its own:

• Instruction pointer
• Copy of local variables
• Run-time stack for procedure activation

– Multiple threads can be associated with a
single process

– All threads within a process share:
• Process owner
• Program being executed
• Program and global data memory
• Allocated resources

Processes Versus ThreadsProcesses Versus Threads

l Both provide mechanisms for concurrent
execution

l Advantages of threads
– Allocated resources and global data are easily

shared
– Typically lower overhead for creation and

switching (but not zero overhead)
l Advantages of multiple processes

– Inherent separation (isolation) makes
interaction clearer

– More widely supported on different operating
systems; common mechanisms

Context SwitchingContext Switching

l Context switching is the operation of
changing from the execution of one
process or thread to another
– Overhead incurred with each context

switch
– Context switch for threads requires less

overhead than for processes
• Threads are “lightweight processes”

Mutual ExclusionMutual Exclusion

l Threads do share allocated resources
(files, sockets, etc.) and global memory

l So, some form of mutual exclusion is
needed to ensure that only a single thread
has use of a particular resource at any
given time

l Mutual exclusion can be implemented
using a “test and set” operation on a true-
false value

Semaphore OperationSemaphore Operation

sem

sem ← true

actions

sem ← false

TRUE
(wait)

FALSE (not in use)

n Semaphore is variable
sem
l TRUE ⇒ in use
l FALSE ⇒ not in use

n Semaphore (sem) is first
initialized to FALSE

n Test-and-set must be an
“indivisible” or “atomic”
operation

Apparent Concurrency (1)Apparent Concurrency (1)

l Threads allow concurrency to be
implemented at the application level

l Apparent concurrency is also possible
where server appears to be
simultaneously serving requests, but is
doing this with a single thread

l Based on asynchronous I/O
– Synchronous I/O is blocking -- a call blocks

until the source is ready
– Asynchronous I/O is non-blocking

Apparent Concurrency (2)Apparent Concurrency (2)

l select() call
– Allows a program to select between

multiple services and returns when one
becomes active

– Basis for apparent concurrency

You should now be able to … (1)You should now be able to … (1)

l Specify general design requirements for
clients and servers

l Characterize application protocols with
respect to
– Connection versus connection-less
– Stateful versus stateless

l Identify design issues related to use of
stateful and stateless protocols

l Identify the need for concurrent execution

You should now be able to … (2)You should now be able to … (2)

l Identify the properties of threads and
processes

l Identify design issues related to the
use of threads versus processes

l Identify the difference between
concurrent execution with threads
and apparent concurrency

