
Application Layer 1

Socket ProgrammingSocket Programming

Srinidhi Varadarajan

ClientClient--server paradigmserver paradigm

Client:
� initiates contact with server

(“speaks first”)
� typically requests service

from server,
� for Web, client is

implemented in browser; for
e-mail, in mail reader

Server:
� provides requested service

to client
� e.g., Web server sends

requested Web page, mail
server delivers e-mail

application
transport
network
data link
physical

application
transport
network
data link
physical

request

reply

Application Layer ProgrammingApplication Layer Programming

API: application programming interface
� defines interface between application and

transport layer

� sockets: Internet API
– two processes communicate by sending data

into socket, reading data out of socket

Socket Interface. What is it?Socket Interface. What is it?

� Gives a file system like abstraction to the
capabilities of the network.

� Each transport protocol offers a set of
services. The socket API provides the
abstraction to access these services

� The API defines function calls to create,
close, read and write to/from a socket.

Socket AbstractionSocket Abstraction

� The socket is the basic abstraction for network
communication in the socket API
– Defines an endpoint of communication for a process
– Operating system maintains information about the

socket and its connection
– Application references the socket for sends, receives,

etc.

Process
B

Process
A

Ports (Sockets)

Network

What do you need for socket communication ?What do you need for socket communication ?

� Basically 4 parameters
– Source Identifier (IP address)
– Source Port
– Destination Identifier
– Destination Port

� In the socket API, this information is
communicated by binding the socket.

Application Layer 2

Creating a socketCreating a socket
int socket(int domain, int type, int protocol)

The call returns a integer identifier called a
handle

Protocol Family:
PF_INET or
PF_UNIX

Communication
semantics:

SOCK_STREAM or
SOCK_DGRAM

Usually
UNSPEC

Binding a socketBinding a socket
int bind (int socket, struct sockaddr *address, int addr_len)

� This call is executed by:
– Server in TCP and UDP

� It binds the socket to the specified address. The
address parameter specifies the local component
of the address, e.g. IP address and UDP/TCP port

Socket DescriptorsSocket Descriptors

� Operating system maintains a set of
socket descriptors for each process
– Note that socket descriptors are shared

by threads
� Three data structures

– Socket descriptor table
– Socket data structure
– Address data structure

Socket DescriptorsSocket Descriptors
Socket

Descriptor
Table

0:
1:
2:

...

proto family:
PF_INET

Socket Data
Structure

service:
SOCK_STREAM
local address:

...

remote address:

address family:
AF_INET

Address Data
Structure

host IP:
128.173.88.85
port:
80

TCP Server Side: ListenTCP Server Side: Listen
int listen (int socket, int backlog)

� This server side call specifies the number
of pending connections on the given
socket.

� When the server is processing a
connection, “backlog” number of
connections may be pending in a queue.

TCP Server Side: Passive OpenTCP Server Side: Passive Open
int accept (int socket, struct sockaddr *address, int *addr_len)

� This call is executed by the server.

� The call does not return until a remote
client has established a connection.

� When it completes, it returns a new socket
handle corresponding to the just-
established connection

Application Layer 3

TCP Client Side: Active OpenTCP Client Side: Active Open
int connect (int socket, struct sockaddr *address, int *addr_len)

� This call is executed by the client. *address
contains the remote address.

� The call attempts to connect the socket to a
server. It does not return until a connection has
been established.

� When the call completes, the socket “socket” is
connected and ready for communication.

Sockets: SummarySockets: Summary

� Client:
int socket(int domain, int type, int protocol)
int connect (int socket, struct sockaddr *address, int addr_len)

� Server:
int socket(int domain, int type, int protocol)
int bind (int socket, struct sockaddr *address, int addr_len)
int listen (int socket, int backlog)
int accept (int socket, struct sockaddr *address, int *addr_len)

Message PassingMessage Passing
� int send (int socket, char *message, int msg_len, int

flags) (TCP)

� int sendto (int socket, void *msg, int len, int
flags, struct sockaddr * to,
int tolen); (UDP)

� int write(int socket, void *msg, int len); /* TCP */

� int recv (int socket, char *buffer, int buf_len, int
flags) (TCP)

� int recvfrom(int socket, void *msg, int len, int
flags, struct sockaddr *from, int
*fromlen); (UDP)

� int read(int socket, void *msg, int len); (TCP)

Summary of Basic Socket CallsSummary of Basic Socket Calls

CLIENT SERVER

accept()connect()

Connect
(3-way handshake)

write() read()Data

read() write()Data

close() close()

new
 connection

Network Byte OrderNetwork Byte Order

� Network byte order is most-significant
byte first

� Byte ordering at a host may differ
� Utility functions

– htons(): Host-to-network byte order for a short
word (2 bytes)

– htonl(): Host-to-network byte order for a long
word (4 bytes)

– ntohs(): Network-to-host byte order for a short
word

– ntohl(): Network-to-host byte order for a long
word

Some Other “Utility” FunctionsSome Other “Utility” Functions
� gethostname() -- get name of local host
� getpeername() -- get address of remote

host
� getsockname() -- get local address of

socket
� getXbyY() -- get protocol, host, or service

number using known number, address, or
port, respectively

� getsockopt() -- get current socket options
� setsockopt() -- set socket options
� ioctl() -- retrieve or set socket information

Application Layer 4

Some Other “Utility” Functions Some Other “Utility” Functions

� inet_addr() -- convert “dotted”
character string form of IP address to
internal binary form

� inet_ntoa() -- convert internal binary
form of IP address to “dotted”
character string form

Address Data StructuresAddress Data Structures

� sockaddr is a generic address structure

� sockaddr_in is specific instance for the Internet address
family

struct sockaddr {
u_short sa_family; // type of address
char sa_data[14]; // value of address

}

struct sockaddr_in {
u_short sa_family; // type of address (AF_INET)
u_short sa_port; // protocol port number
struct in_addr sin_addr; // IP address
char sin_zero[8]; // unused (set to zero)

}

