
Client DesignClient Design

Srinidhi Varadarajan

TopicsTopics

� Concurrency in client
– Concepts
– Approaches

� TCP timed echo example

Why Use Concurrency in Why Use Concurrency in Servers Servers ??

� Improved response time
� Can be used to eliminate deadlocks
� Simplifies implementation of multiprotocol

and multiservice servers
� Threads work on uniprocessors, but can

take advantage of multiprocessors

Except for multiprocessor execution, none of
these reasons directly applies to clients.

Why Use Concurrency in Why Use Concurrency in Clients Clients ? (1)? (1)

� Can separate functionality into distinct
components, with advantages for code
design and maintenance
– Requester (sends requests)
– Receiver and processor
– User interface
– Control

� Client can simultaneously contact multiple
servers
– Distributed search
– Compound documents with elements on

multiple servers

Why Use Concurrency in Why Use Concurrency in Clients Clients ? (2)? (2)

� Allows interaction while a request is in
progress
– Status checks
– Abort operation
– Modify parameters

� Potential performance advantage for
overlapping operations
– Processing, file I/O, and network I/O
– Overlap operations on multiple connections

� Provides asynchrony
– Set of multiple tasks can be performed without

the imposition of a strict ordering

Implementing Concurrency in ClientsImplementing Concurrency in Clients
� Two approaches (as for servers)

– Multiple threads, using pthread_create()
– Apparent concurrency, using select()

� Multiple threads
– Each thread performs a distinct set of tasks, or
– Each thread performs a separate request or

other task, or
– Some combination of the above

� Apparent concurrency
– Single thread uses select() for asynchronous

I/O
– Time-outs should be included to prevent client

deadlock

Multithreaded Client (1)Multithreaded Client (1)
� Single network socket (TCP or UDP)
� Functional decomposition

CLIENT

socket

MASTER

Control Input Output

user
output

user
input

control

Multithreaded Client (2)Multithreaded Client (2)
� Multiple network sockets
� Hybrid approach, since there is also functional

decomposition

CLIENTMASTER

Slave 1 Slave n Renderer

outputsocketsocketinput

SingleSingle--Threaded Concurrent ClientThreaded Concurrent Client
� Single thread uses select() call to find active

socket and file descriptors
� Decomposition by socket and functions

CLIENT

outputsocketsocketinput

TCPtechoTCPtecho Example (1)Example (1)

� TCPtecho
– Single client that accesses multiple servers

(in this case, ECHO servers)
– Utility is to simultaneously measure network

throughput between the client and multiple
servers

� Basic tasks
– Make connections to each server -- main()
– Send data until all data is sent -- writer()
– Receive data until all data is received --

reader()

TCPtechoTCPtecho Example (2)Example (2)

� writer()
– For a given host …

• Send as much data as possible up to total amount to
send

• Reduce amount left to send by amount actually sent
• If all is sent, shutdown connection for send with

shutdown()
– writer() called when a socket is ready for

send()
– Since data to be sent may be larger than what

can be sent, sockets are set to “non-blocking”
to ensure that send() won’t block

• ioctl(fd, FIONBIO, &one)

TCPtechoTCPtecho Example (3)Example (3)
� reader()

– For a given host …
• Receive as much data as possible, up to

buffer size
• Reduce amount received from amount to

receive
• If all is received close the connection with

close()

ioctlioctl()()
� ioctl(socket, command, arg_ptr)
� Commands

– FIONBIO: enable non-blocking mode
– FIONREAD: determine amount of data

pending in the network’s input buffer
– SIOCATMARK: determine whether or not

all out of band data has been read
� In TCPtecho

– u_long one = 1
– ioctl(fd, FIONBIO, &one)

GetsockoptGetsockopt() and() and SetsockoptSetsockopt()()
� setsockopt() and getsockopt() also

used to monitor and control socket
operation

� For example, to force TCP to
immediately send data
int optval = 1;

setsockopt(sock, IPPROTO_TCP,
TCP_NODELAY, (const char *)
&optval, sizeof(int));

You should now be able to …You should now be able to …

� Describe the need for concurrency in
a client

� Describe approaches to making a
client concurrent

� Analyze and design a simple
concurrent client

� Use ioctlsocket() to control socket
options

