

From genome-wide association studies to disease relationships

Liqing Zhang Department of Computer Science Virginia Tech

Types of variation in the human genome

- SNPs (single nucleotide polymorphisms))
- Insertions
- Deletions
- Duplications
- Rearrangements

Types of variation in the human genome

• Small- vs. large-scale

Single nucleotide variant

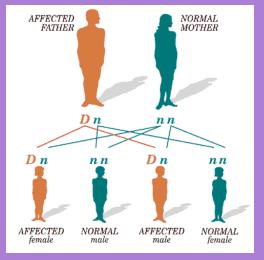
Insertion-deletion variant

Block substitution

Inversion variant

Copy number variant

ATTGGCCTTAACCCCCGATTATCAGGAT ATTGGCCTTAACCTCCGATTATCAGGAT


ATTGGCCTTAACCCGATCCGATTATCAGGAT ATTGGCCTTAACCC---CCGATTATCAGGAT

ATTGGCCTTAAC<mark>CCCC</mark>GATTATCAGGAT ATTGGCCTTAAC<mark>AGTG</mark>GATTATCAGGAT

ATTGGCCTT<mark>AACCCCCG</mark>ATTATCAGGAT ATTGGCCTT<mark>CGGGGGGTT</mark>ATTATCAGGAT

ATT<mark>GGCCTTAGGCCTTA</mark>ACCCCCGATTATCAGGAT ATT<mark>GGCCTTA----</mark>ACCTCCGATTATCAGGAT


Why do we care about variation?

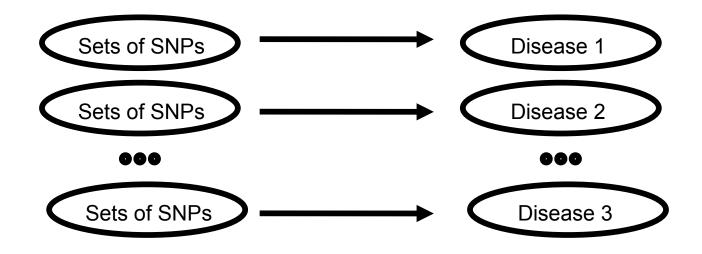
underlie phenotypic differences

cause inherited diseases

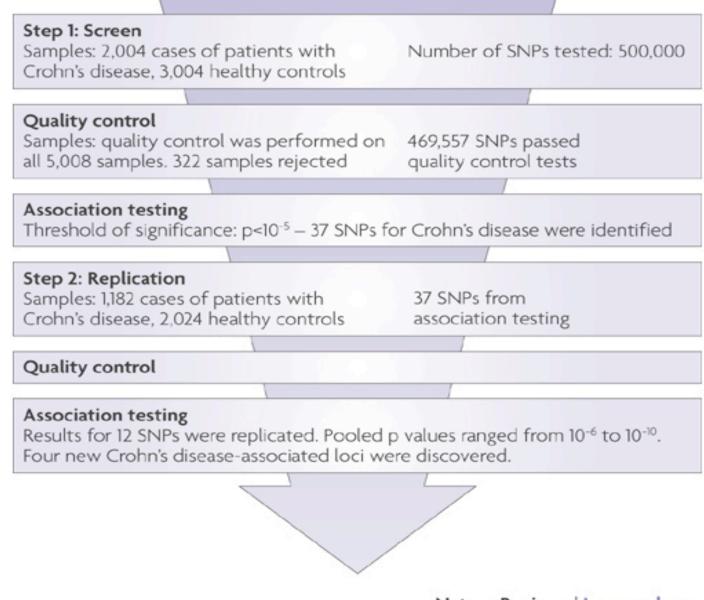
allow tracking ancestral human history

SNPs in the human genome

- SNP location with respect to genes
 - ✓ Exonic
 - nonsynonymous: lead to amino acid substitutions
 - synonymous: do not alter amino acid, but they might affect mRNA stability and alter splicing signals
 - ✓ Introns, regulatory and gene-distant regions
 - affect gene regulation
 - splicing
- Effect: likely give rise to the observable phenotypic differences within and between populations, including disease susceptibility and outcome.

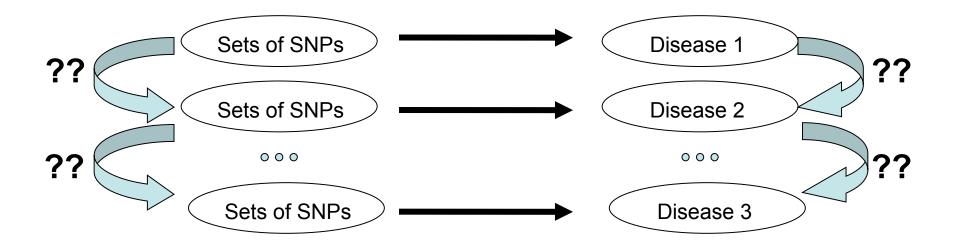

SNPs in the human genome

- SNPs frequency and evolution
 - \checkmark Transitions are more common than transversions
 - New SNPs arise via mutation and with time they either disappear or reach fixation
 - SNPs that have a selective advantage among members of population may become enriched within that population through positive selection
 - Pattern of selection in the human genome is not uniform and vary according to gene functions

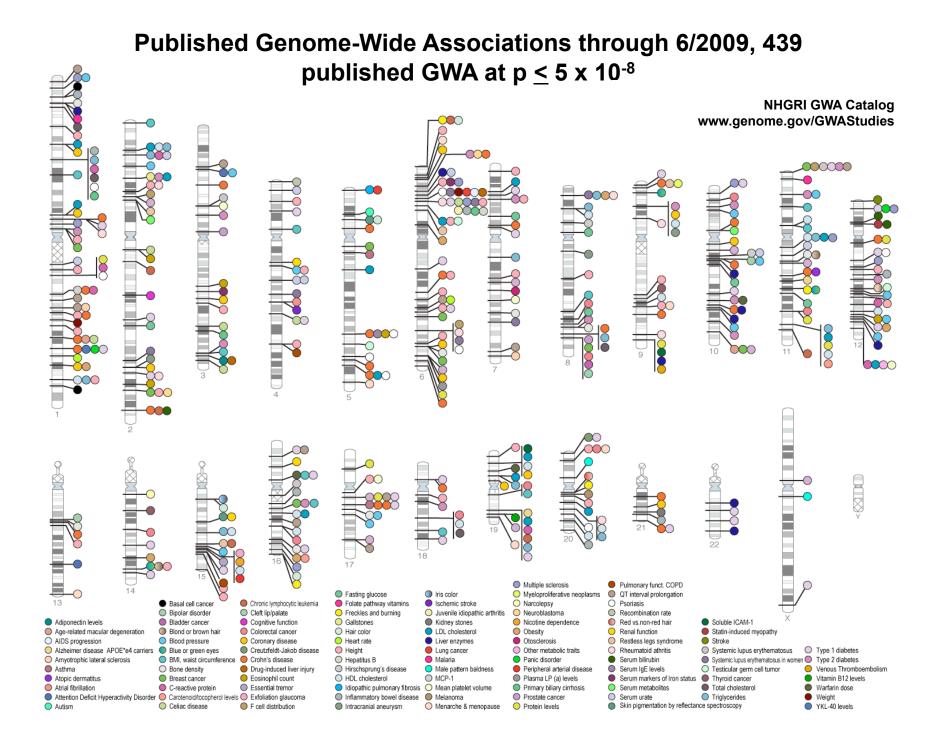

SNPs and disease association

 Identify those SNPs that are strongly (statistically significant) associated with a disease of interest

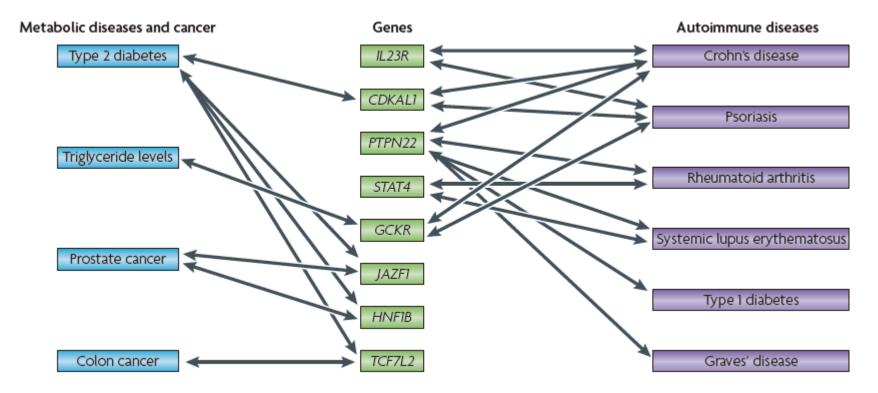
Normal individual ATCGGTCGGAAGAGTTCCATGGGGGGGTACAAAATGAGTAGAGC Normal individual ATCGCTCGGAAGAGTTCCAAGGGGGGGTACAAAATGAGTAGAGC Disease individual ATCGGTCGGAAGAGTTCCATGGGGGGGTACAAAACGAGTAGAGC Disease individual ATCGGTCGGAAGAGTTCCAAGGGGGGGTACAAAACGAGTAGAGC


Genome Wide Association Studies

Nature Reviews | Immunology


SNP association and disease association

Different diseases are related. What is the genetic basis for disease associations?


Most studies focus on identifying horizontal causal relationships. Identifying vertical relationships is very important:

- discover possible hidden relationships between diseases.
- improve therapeutic treatment, disease diagnosis, & better prevention.

Human diseaseome

 Disease relationship through shared genes and pathways

Objectives

 Develop a framework to identify

t

h

- e genetic commonality between diseases.
 - Use available GWA data.
- Analyze SNPs at four levels:
 - Nucleotide level (SNPs)
 - Gene level
 - Protein level
 - Phenotype level

Data used to identify the genetic basis of disease associations

7 diseases

from

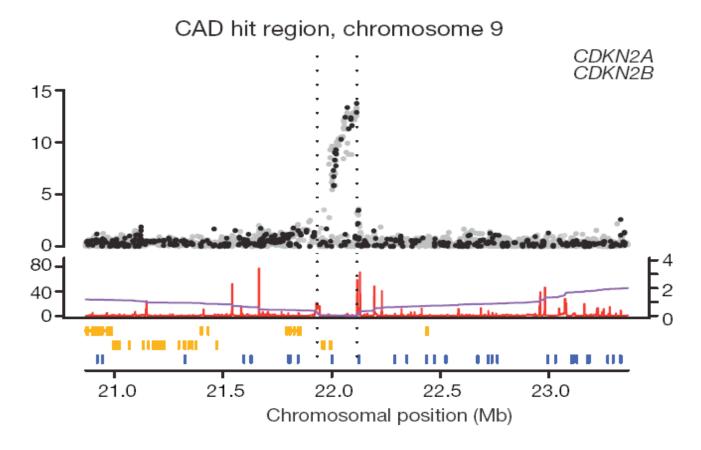
Wellcome Trust Case Control Consortium (WTCCC):

- bipolar disorder (BD), coronary artery disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthr

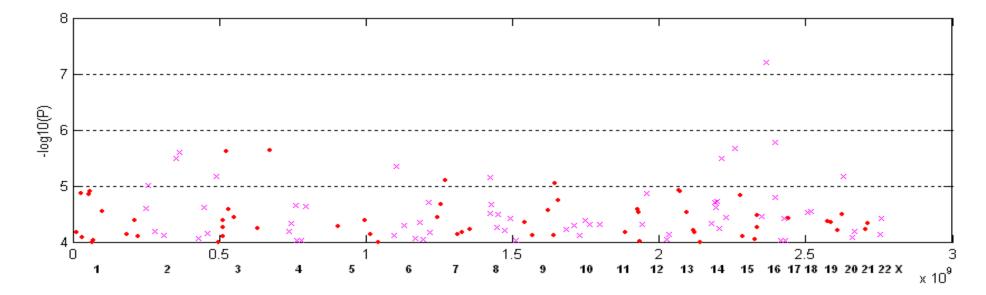
itis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).

 about 2,000 humans in the British population for

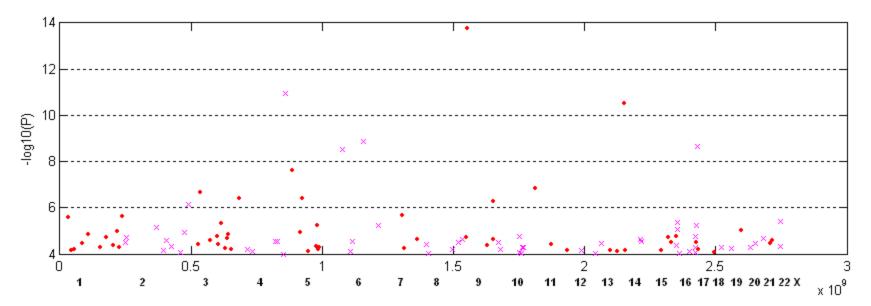
е

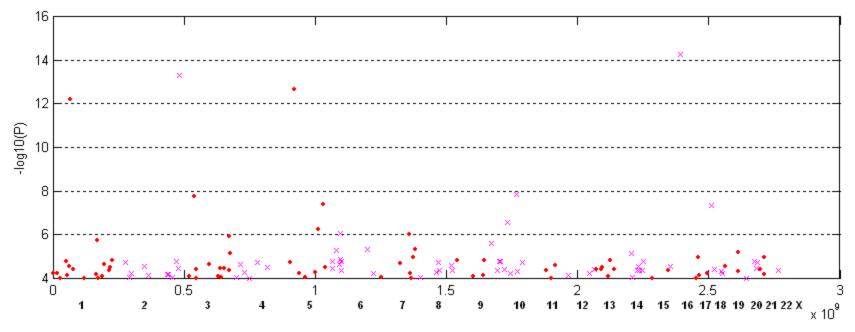

а

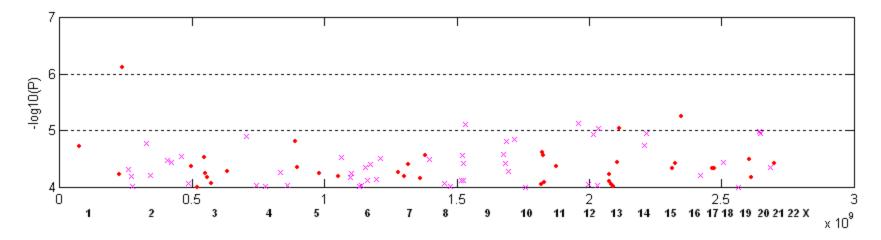
ch of 7 diseases and a shared set of about 3,000 controls.

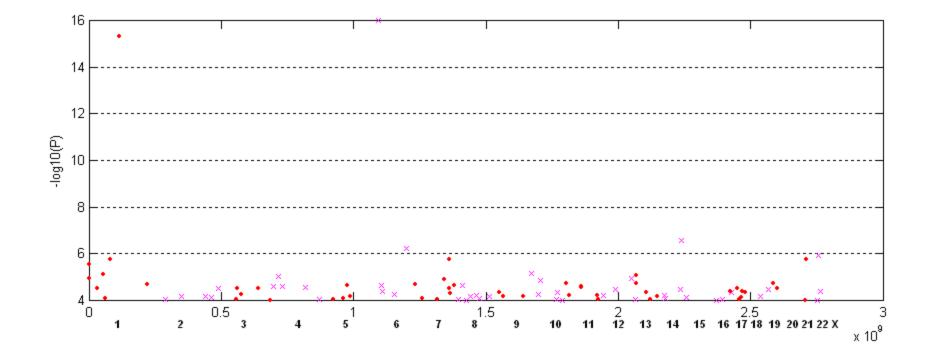

- Disease classification:
 - 3 natural groups:
 - CAD+HT+T2D (metabolic
 - an
 - d

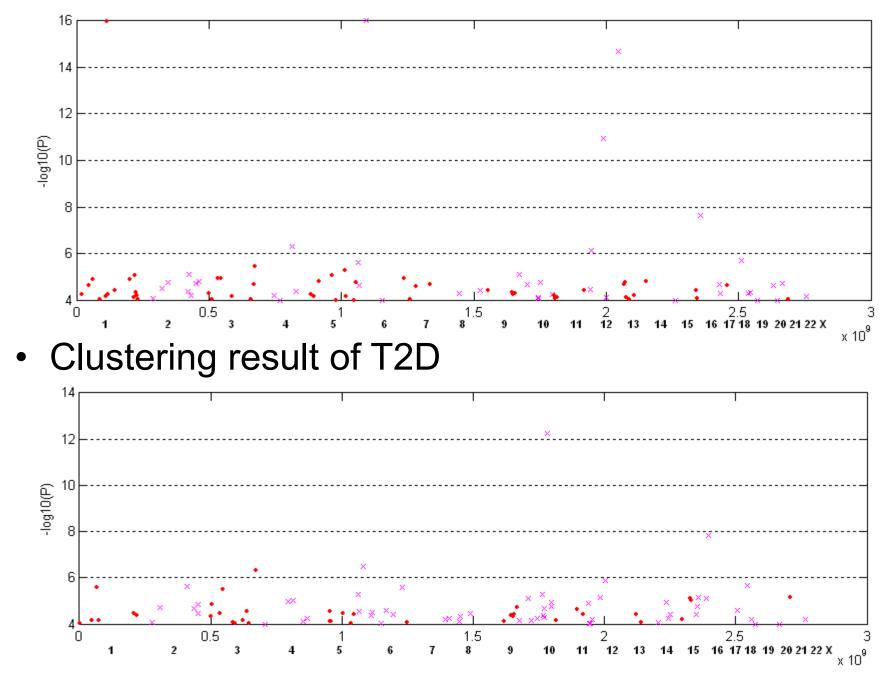
SNP level analysis


- Strong or moderate associations are associated SNPs which have P-value < 10⁻⁴
- These SNPs are clustered into blocks with the distances between blocks being at least one mega base pairs.

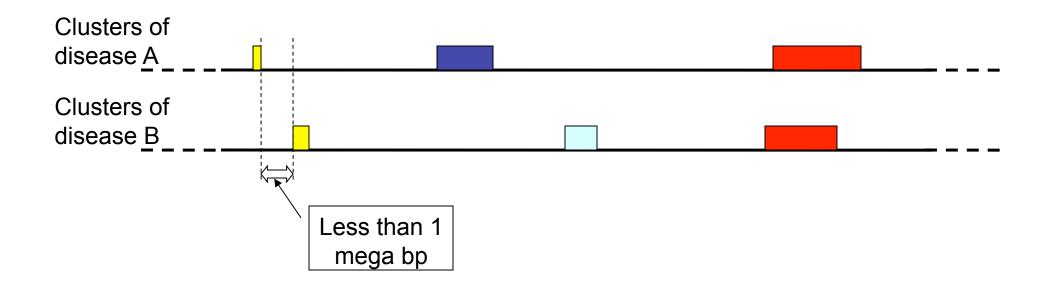

Clustering result of BD


Clustering result of CAD


• Clustering result of CD


Clustering result of HT

• Clustering result of RA



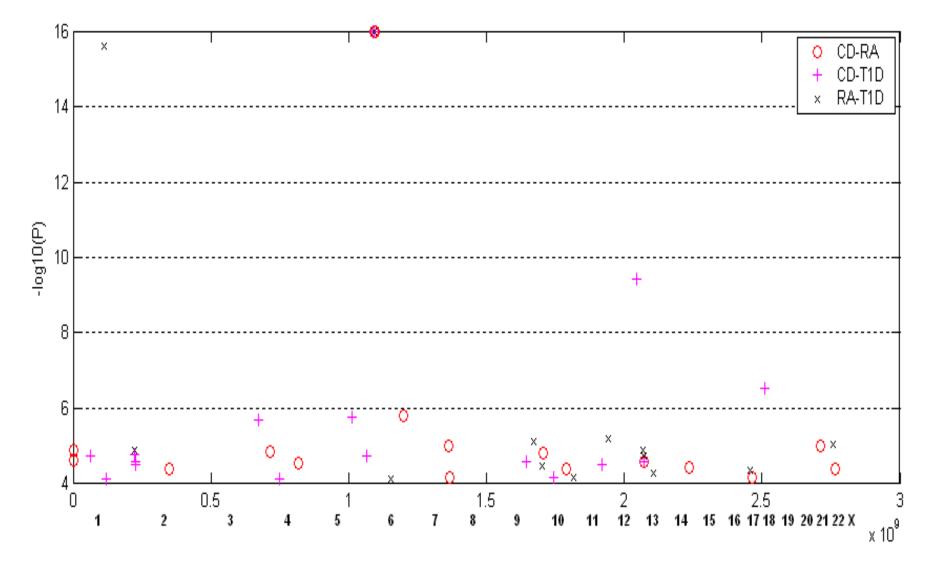
Clustering result of T1D

Comparing cluster patterns of different diseases

- Paired (common) clusters:
 - Clusters from different diseases are compared to see whether they are overlapping or very close.

Jaccard Value Matrix

$$J_{A-B} = \frac{A \cap B}{A \cup B}$$


	BD	CAD	CD	HT	RA	T1D	T2D
BD		0.0563	0.0547	0.0569	0.0648	0.0645	0.0787
CAD	0.0563		0.0494	0.0556	0.0591	0.0637	0.0443
CD	0.0547	0.0494		0.0493	0.0789	0.0699	0.0658
HT	0.0569	0.0556	0.0493		0.0328	0.0380	0.0109
RA	0.0648	0.0591	0.0789	0.0328		0.0688	0.0319
T1D	0.0645	0.0637	0.0699	0.0380	0.0688		0.1005
T2D	0.0787	0.0443	0.0658	0.0109	0.0319	0.1005	

Total Length Matrix

- Total length = sum of all paired clusters' lengths for two diseases.
- Motivation
 - proportional to number of paired clusters
 - proportional to cluster length, which indicates the reliability of the association.

	BD	CAD	CD	HT	RA	T1D	T2D
BD		0.6883	0.7004	2.0869	4.4758	9.2207	0.7883
CAD	0.6883		1.8142	0.6240	0.3076	1.7135	1.2430
CD	0.7004	1.8142		1.2177	10.4997	15.2214	1.6777
HT	2.0869	0.6240	1.2177		0.6605	0.0456	0.1341
RA	4.4758	0.3076	10.4997	0.6605		16.2455	1.3246
T1D	9.2207	1.7135	15.2214	0.0456	16.2455		1.7031
T2D	0.7883	1.2430	1.6777	0.1341	1.3246	1.7031	

Distribution of cluster pairs for CD, RA and T1D

•Convert SNP clusters to genes

•Assumptions:

•Each SNP cluster may participate in regulating one or more genes.

•Biological functions are expressed by genes.

•Goal 1

•To explore disease association on the level of genes.

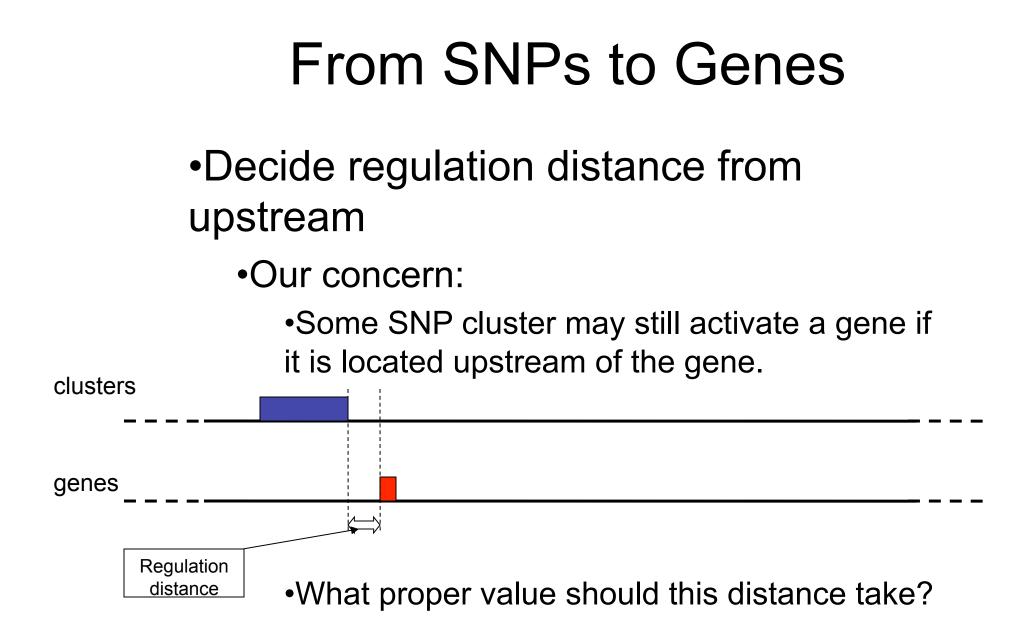
Motivation

•Mutated or disregulated genes are the causes of many diseases

•Goal 2

•To make possible our further investigation on the level of protein networks.

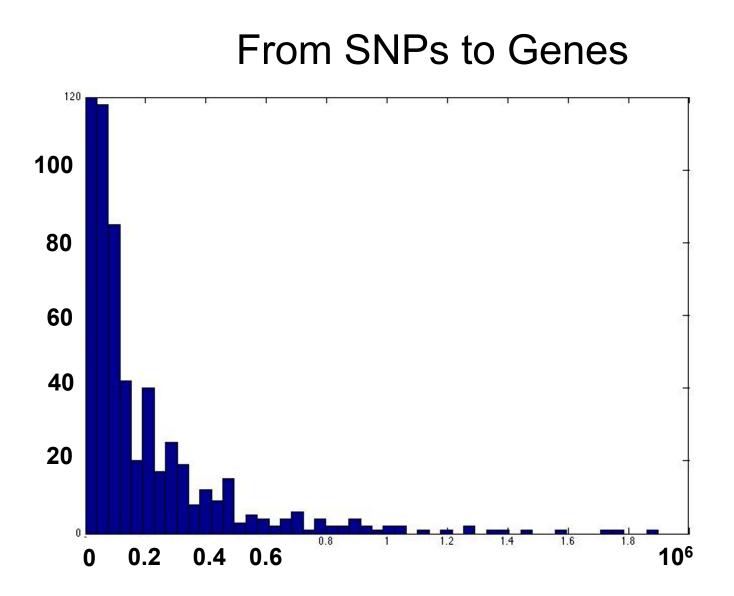

Motivation


•Genes related to these diseases may indicate protein counterparts in patients' body.

•Decide regulation distance from upstream

•Straightforward conversion:

•Convert a SNP cluster to a gene that shares an overlapping region.


•Decide regulation distance from upstream

•Assumption:

•Every SNP cluster has a major regulatory effect on its nearest gene.

•Method:

•Collect distances from all SNP clusters to their nearest genes, and study the statistics.

Histogram for the distances from the nearest genes. Max Distance = 1,899,079 base pairs

•Convert clusters to genes Numbers of genes found

BD	CAD		HT	RA	T1D	T2D
105	111	610	40	808	1095	33

Regulation distance = 0

BD	CAD		НТ	RA	T1D	T2D
5182	4370	6505	2812	4904	5304	3389

Regulation distance = 1,899,079

•Find shared genes between pairs of diseases

Number of shared genes

	BD	CAD	CD	HT	RA	T1D	T2D
BD		0	11	0	0	0	0
CAD	0		0	0	0	0	0
CD	11	0		0	223	240	0
HT	0	0	0		0	0	0
RA	0	0	223	0		686	0
T1D	0	0	240	0	686		0
T2D	0	0	0	0	0	0	

Regulation distance = 0

•Find shared genes between pairs of diseases

Number of shared genes

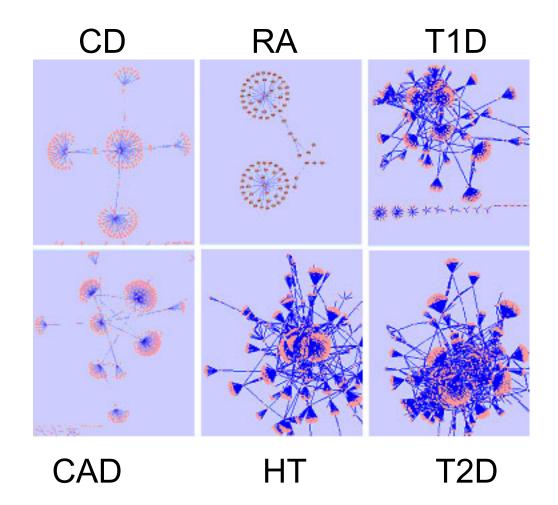
	BD	CAD	CD	HT	RA	T1D	T2D
BD		492	837	460	1005	712	598
CAD	492		354	333	648	522	261
CD	837	354		604	1164	1171	584
HT	460	333	604		151	251	139
RA	1005	648	1164	151		1412	281
T1D	712	522	1171	251	1412		702
T2D	598	261	584	139	281	702	

Regulation distance = 1,899,709

Conclusion

•Under different regulation distances from upstream, associated patterns among CD, RA and T1D are observed, at the level of genes.

•no significant relation is found among CAD, HT and T2D.


•Further investigation on protein networks is required.

From Genes to protein-protein interaction (PPI) network

•Convert genes to proteins

•Construct the PPI network using the STRING database

From Genes to PPI network

From Genes to PPI network

- Hub proteins:
 - nodes with >=15 degrees in the network.
 - form the backbone of a network
 - an important measurement for the similarity between protein interaction networks

From Genes to PPI network

number of hub proteins identified for each disease

Disease	Number of hub proteins
BD	2
CAD	11
CD	21
HT	2
RA	17
T1D	25
T2D	0

From Genes to protein-protein interaction network

the number of shared hub proteins in disease networks

Diseases	Number of hub proteins
CD, RA, and T1D	1
RA and T1D	5

The function of five hub proteins shared by RA and T1D and supporting publications

Protein name	Function(GO)	Association	Association	Pubmed
		with RA	with T1D	id
HLA class I histocompati-	Immune response	Yes	Yes	11369787
bility antigen				
Radiation-inducible	NOT found in GO	Yes	Yes	16368886,
immediate-early gene				14630199
IEX-1				
Collagen alpha	Integral to	Yes	No	8816431
	membrane;Beta-			
	amyloid binding;			
	Heparin binding			
Death domain-associated	Nucleus; Protein	No	No	n/a
protein 6	binding; Protein			
	homodimerization ac-			
	itivity; Transcription			
	factor binding			
Mediator of DNA damage	Nucleus; Protein bind-	Yes	No	17913746
checkpoint protein 1	ing			

 MimMiner to score the degree of similarity of various diseases to the diseases of our interest; The higher the score is, the more similar the two diseases are in terms of their phenotypes.

Rank	id	Score	Disease Name		
Crohn's disease and its phenotype hits.					
1	266600	1.0000	inflammatory bowel disease 1		
2	191390	0.6624	ulcerative colitis		
3	605225	0.6402	inflammatory bowel disease 7		
4	180300	0.4314	rheumatoid arthritis		
5	177900	0.4256	soriasis susceptibility		
6	301000	0.4220	wiskott-aldrich syndrome		
7	222100	0.4065	diabetes mellitus, insulin-dependent		
8	249100	0.4054	familial mediterranean fever		
9	232220	0.4048	glycogen storage disease ib		
10	219700	0.4043	cystic fibrosis		

rheumatoid arthritis and its phenotype hits.					
1	180300	1.0000	rheumatoid arthritis		
2	180350	0.4476	rheumatoid nodulosis		
3	266600	0.4314	inflammatory bowel disease 1		
4	222100	0.4117	diabetes mellitus		
5	106300	0.3881	ankylosing spondylitis		
6	191390	0.3861	ulcerative colitis		
7	606044	0.3816	sjogren syndrome		
8	254500	0.3736	myeloma, multiple		
9	109100	0.3681	autoimmune disease		
10	300310	0.3665	agammaglobulinemia		

type 1 diabetes and its phenotype hits.					
1	125480	1.0000	diabetes mellitus		
2	275000	0.4704	graves disease		
3	601318	0.4478	diabetes mellitus		
4	270150	0.4458	sjogren syndrome		
5	600496	0.4415	maturity-onset diabetes of the young		
6	217000	0.4141	complement component 2 deficiency		
7	180300	0.4117	rheumatoid arthritis		
8	266600	0.4065	inflammatory bowel disease 1		
9	137100	0.4049	immunoglobulin a defi1		
10	125850	0.4042	maturity-onset diabetes		

Conclusions and Discussion

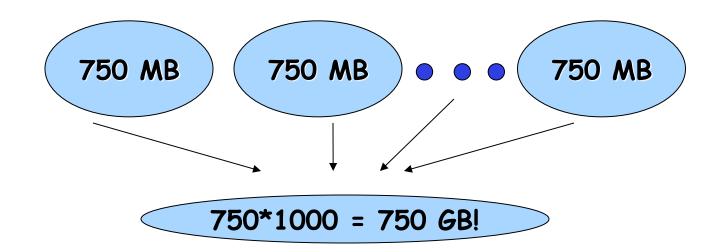
- We analysed SNP associations between 7 diseases.
- For one group of diseases (CD, RA, T1D), strong genetic associations are found for ALL levels of analysis.
- For another group of diseases (CAD, HT, T2D), no genetic association is found.
- Negative result could be due to inappropriate grouping of diseases, or primitive analysis approach, or wrong assumption.

Acknowledgements

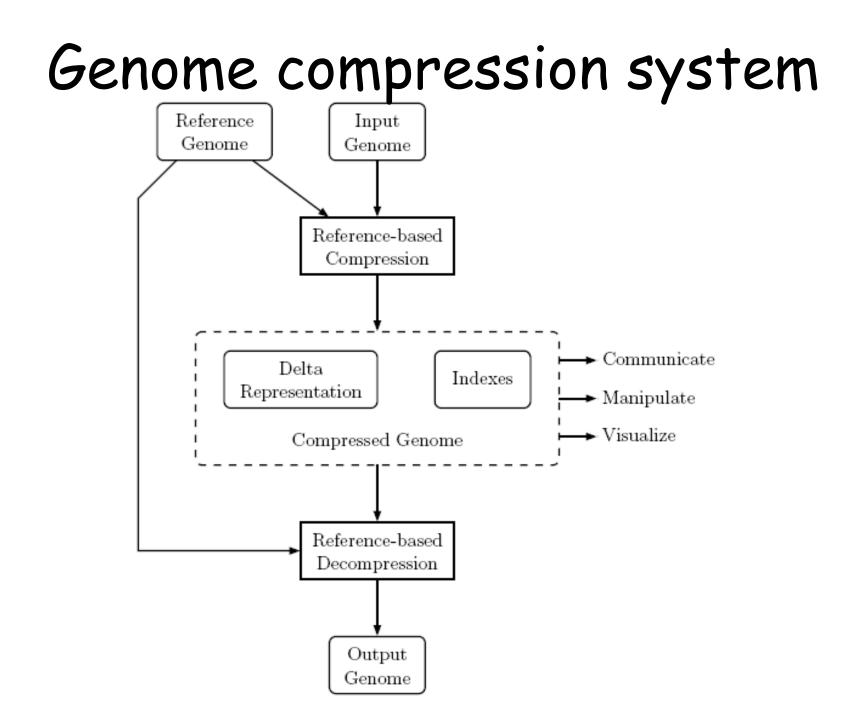
- Wenhui Huang
- Pengyuan Wang
- Zhen Liu
- Deng Pan

National Science Foundation (NSF). AdvanceVT grant.

Research areas

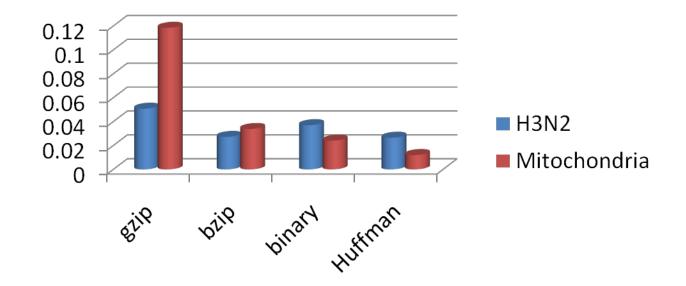

- Systems biology to understand disease relationships
 - Microarray data, protein interaction data
 - Genome wide association studies
- Large-scale data processing software
 Short reads mapping project
- Data mining
 - Rare class prediction algorithm
- Algorithms in genomics
 - Genome compression project
- Comparative genomics

Several ongoing projects


- Genome compression project
- Rare class prediction problem
- Parallelization of next generation shortreads mapping programs
 - Mapping of the short reads of RNAs to the mosquito genome, determine the patterns of the distribution, infected with virus vs. the uninfected
- Microarray data analysis for lung cancer

Genome compression

• Human genome: 3 billion bps, takes up about 750 Mb to store.



Storage, communication, manipulation challenges!!

Compression Ratio

5473 Mitochondria DNA (Primitive size 91,590,508 bytes)					
	gzip	bzip2	Binary	Huffman	
Size	10,860,887	3,096,944	2,211,120	1,101,628	
Ratio	0.1185	0.0338	0.0241	0.01202	
1455 H3N2 Virus genome segments (Primitive size 1,995,960 bytes)					
Size	101,494	54,314	73,901	52,927	
Ratio	0.0508	0.0272	0.0370	0.0265	

The Rare-Class Data Problem

- Occurs when one class is far outweighed by other classes
 - In a binary dataset: minority and majority class
 - Minority class is typically the class of interest

Rare class problem is common

Examples

•

D

etecting a hacker/cracker illegally using a server

- Majority: normal users
- Minority: illegal users
- Identifying flaws in manufacturing
 - Majority: correctly working products
 - Minority: flawed products
- Internet search
 - Majority: Irrelevant websites
 - Minority: Relevant website(s)

Biological Examples

- Disease Diagnosis
 - Majority: Do not have disease
 - Minority: Have disease
- Gene prediction on a DNA strand
 - Majority: "Junk" DNA
 - Minority: Genes
- Detecting cancer in a tissue
 - Majority: Healthy tissue
 - Minority: Cancerous tissue

Ongoing projects and directions

- Comparative genomics of the turkey genome with the chicken genome
 - Structural variation in the turkey genome
- Molecular evolution of genes involved in RNAi pathways of different mosquito species.
- Cow comparative genomics with other mammals.
- Dog group.
- Compensatory mutations in protein evolution
- Gene family evolution and gene conversion prediction program.
- Mining of GWA studies -- SNPs and diseases