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Abstract We demonstrate how to model macromolecular regulatory networks with

JigCell and the Parameter Estimation Toolkit (PET). These software tools are de-

signed specifically to support the process typically used by systems biologists to

model complex regulatory circuits. A detailed example illustrates how a model of

the cell cycle in frog eggs is created and then refined through comparison of sim-

ulation output with experimental data. We show how parameter estimation tools

automatically generate rate constants that fit a model to experimental data.
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1 Introduction

Mathematical models of gene-protein regulatory networks play key roles in archiv-

ing and advancing our understanding of the molecular basis of cell physiology. Mod-

els provide rigorous connections between the physiological properties of a cell and

the molecular wiring diagrams of its control systems. A simple example is the set

of reactions controlling the activity of MPF (mitosis promoting factor) in Xenopus

oocytes (1), which we refer to herein as the frog egg model. In the diagram of this

network (Fig. 1), vertices represent substrates and products (collectively referred

to as species), solid directed edges represent biochemical reactions, and dashed di-

rected edges represent regulatory signals.

Collectively, these biochemical reactions cause the concentrations of the chem-

ical species (Si) to change in time according to a set of differential equations (one

for each species)

dSi

dt
=

R

∑
j=1

bi jv j, i = 1, . . . ,N,

where R is the number of reactions, N is the number of species, v j is the velocity of

the jth reaction in the network, and bi j is the stoichiometric coefficient of species i

in reaction j (bi j < 0 for substrates, bi j > 0 for products, bi j = 0 if species i takes no

part in reaction j). Fig. 1 shows differential equations derived from the reactions in

the network diagram. The set of rate equations and associated parameter values is a

mathematical representation of the temporal behavior of the regulatory network.

Since the purpose of these models is to codify a systems-level understanding of

the control of some aspect of cell physiology, it is necessary to validate a proposed

model against observed behavior of the reference system. In most cases it is essen-

tial to model the behavior of not only the wild-type form of the organism, but also

of many mutant forms (where each mutant form typically represents one or two
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variations in the genetic specification of the control system). For example, if we are

modeling the cell cycle of an organism, then we would wish to know features such

as the cell size at division, the time required for various phases of the cell cycle (G1,

S, G2, M), and the viability or point of failure for each mutation. Measurements

of the amounts for various control species within the cell over time would also be

valuable information. In the case of a thoroughly studied organism such as Saccha-

romyces cerevisiae (budding yeast), a model can be compared against many dozens

of mutants defective in the regulatory network.

A realistic model of the budding yeast cell cycle consists of over 30 differential

equations and 100 rate constants and is tested against the phenotypes of over 150

mutants (2). A model of this complexity represents the upper limit of what a dedi-

cated modeler can produce “by hand” with nothing but a good numerical integrator

like LSODE (3). Beyond this size, we begin to lose our ability even to meaning-

fully display the wiring diagram that represents the model, let alone comprehend

the information it contains, or determine suitable rate constants in the correspond-

ing high-dimensional space. To adequately describe fundamental physiological pro-

cesses (such as the control of cell division) in mammalian cells will require models

of 100-1000 equations. To handle this next generation of dynamical models will

require sophisticated software to automate the modeling process: network specifica-

tion, equation generation, simulation and data management, and parameter estima-

tion.

There are a number of distinct approaches to simulation. Deterministic models

usually represent the system of chemical reactions with ordinary differential equa-

tions (4, 5, 6). In some cases, partial differential equations are used to account for

spatial effects (7). Stochastic modeling is in its infancy, and most often is done by

some variation of Gillespie’s algorithm (8, 9, 10). For the remainder of our discus-
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sion, we will consider only deterministic simulation by ordinary differential equa-

tions (ODEs).

Creating a model that mimics the observed behavior of a living organism is a

difficult task. This process involves a combination of biological insight, persistence,

and support by good modeling tools. In the following sections, we will describe

the model development process that we employ and the software tools that we have

developed to construct and test models. We then provide a detailed example of how

the tools can be used to create a simple model of the frog egg cell cycle and to

estimate the associated rate constants.

2 The Modeling Process

Successful modeling of macromolecular regulatory networks can be aided by soft-

ware tools based on a well-defined modeling process. Such tools should support the

line of thought followed by modelers as they approach a problem. Mid-sized mod-

els of macromolecular regulatory networks track reactions among tens of species

and are tested against hundreds of experimental observations. Thus, modelers need

tools that help to organize the relevant information and automate as many steps of

the process as possible. Fig. 2 shows our conception of the modeling process. The

modeler starts with an idea about an organism and a regulatory system to model.

Next, the modeler gathers information (from the literature and from their own ex-

periments) related to the regulatory system of the organism. During the literature

search the modeler builds a hypothesis from information already published, contin-

uously checking the hypothesis against the existing literature. Once the modeler has

a testable hypothesis about the regulatory system, the hypothesis can be codified

into four types of technical information:
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• Experimental Data: The information that will be used to validate the model. This

information might come as time series data of the concentrations of certain reg-

ulatory chemical species, as other observables such as the average size of cells

at division, or as qualitative properties such as the viability or inviability of a

mutant.

• Simulation Runs: Specifications for the simulations that will be made to model

the experimental data. For example, each simulation might relate to a specific

mutation of the organism. The specification will define the distinct conditions

necessary to simulate that mutation, such as differences in rate constants from

the wild-type values.

• Reaction network: The chemical equations that describe the regulatory processes.

• Rate constants: The parameters that govern the reaction rates.

Typically, the experimental data and simulation run descriptions are part of the

problem definition and are not subject to frequent modifications. Nor are they con-

sidered to be “right” or “wrong” in the same way as the reaction network and rate

constant values typically will be. The network and rate constants together define the

mathematical model that will be simulated, compared to experimental observations,

and judged “acceptable” or “unacceptable.”

One simulation run of an ODE model takes only a fraction of a second on a

typical desktop computer in 2007. As described above, a complete model actually

involves a large collection of simulations, to be compared against a collection of

experimental results. This entire set of runs might take a second or so for a smaller

model such as our frog egg example on a desktop computer for one choice of rate

constants, and about a minute or two for a larger model needed to describe the

budding yeast cell cycle.

Once an initial specification of these four types of information has been made,

the next phase of the process begins. This is a simulation-compare-update loop,
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whereby simulation results are compared to the experimental data. In some way,

either a human or a computer will make a judgement as to the quality of the rela-

tionship between the two. At that point, since the model is typically judged unsatis-

factory, the modeler will make adjustments and repeat the cycle. We prefer to view

this as a double loop, in that changes to rate constant values are made much more

frequently than changes to the reaction network. That is, the modeler will typically

“twiddle” the rate constants so long as progress is being made in matching simu-

lation output to experimental data. When changes to the rate constants appear no

longer to improve the match, then the modeler will attempt to improve the model by

changing the reaction network, which in turn will trigger another round of changes

to the rate constants. The process is continued until the model is judged satisfactory

or totally hopeless.

Modelers often try to assign values to rate constants by a time-consuming process

of “parameter twiddling” and visual comparison of simulation results to experimen-

tal data. A better approach is automated parameter estimation (once the modeler is

confident that the basic structure of the reaction network is sound enough). To fit

a model to experimental data by automated optimization algorithms requires thou-

sands to millions of repetitions of the full calculations.

The process of comparing real-world observation (experimental data) with the

mathematical model (time-series output from a simulation) is called model valida-

tion. Model validation is closely related to automated (or manual) parameter esti-

mation, because both require that some measure of the quality of the model can be

made. In the case of automated parameter estimation, we need a way to take the

experimental data and the output from a simulation run, and create a single number

as a measure of the quality of the fit.

This can be extremely difficult. First, the simulation data (usually in the form of

time series plots) might not be similar to the form of the experimental data (often
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qualitative information such as whether a cell is viable or not). In general, some

complex computation must be done to relate the two. The function that does this

computation is called a transform and is discussed further in Section 3.3.1. Second,

while it might be a simple judgement to measure the goodness of fit between one

simulation and one experiment, it is often difficult to judge the goodness of fit of an

entire ensemble of runs, where improvements in matching some experiments might

come at the cost of worse fits for others. The function that balances these fits is

called the objective function and is discussed in Section 3.3.2.

3 Software Tools

Before the current generation of modeling tools for systems biology was devel-

oped, many stages in the modeling cycle described in Section 2 were done by hand.

This presents two problems. First, it takes a great deal of time and effort to convert

the original intuitive concept of a model into a suitable set of reaction equations

and simulations. Second, there are many opportunities for errors, especially at the

(essentially mechanical) step of converting a reaction mechanism into differential

equations.

A wiring diagram, like Fig. 1, nicely represents the topology of a reaction net-

work (reactants, products, enzymes). But it is not a good representation for specify-

ing the kinetics of the network (the reaction rate laws, v j). A large reaction network

can become so complex that even its topological features are obscured by a large

number of intersecting lines. Obscurity is increased by the fact that there is no stan-

dard format for drawing such graphs. Without precise notational conventions, it is

impossible to convert a wiring diagram unambiguously into a model, either by hand

or by machine.
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Another approach for deriving a model is to explicitly write out the chemical re-

actions. This loses some of the intuitive appeal of the diagrammatic approach, but

allows for a more compact definition of a reaction network. Normally, the modeler

has already made a hand or CAD-drawn version of the network in graphical form,

showing the interactions in a qualitative sense but without the quantitative informa-

tion of the rate equations or the rate constant values.

Models often include concepts not captured by the differential equations alone.

Conservation relations are defined by linear combinations of species concentrations

that remain constant throughout a simulation: Ti ≡ ∑N
i=1 aiSi(t), where ai is a con-

stant and Ti is constant. Such constraints arise from linear dependencies in the stoi-

chiometry matrix: ∑N
i=1 aibi j = 0. Events are special actions that trigger in the model

under given conditions. For example, cellular division could be represented by a

halving of cell mass, and might occur when a given function involving some num-

ber of chemical species reaches a threshold during a simulation.

The key to successfully creating and managing such complex models is to use

software tools that organize the information in a coherent way and catch inconsis-

tencies and errors early in the process. In this section we will describe the JigCell

Model Builder (11, 12), which is used to define the reaction equations and rate con-

stants of the model. We then present the JigCell Run Manager (13), which is used

to define a series of simulation runs that will generate output to validate the model.

Finally, we describe the Parameter Estimation Tool (PET) (14), which supports ex-

ploration of the parameter space and automated parameter estimation with the goal

of selecting rate constant values that best fit the simulation output to the experimen-

tal data.

Underlying any such software tool is a representation scheme for describing a

model, that is, a language for expressing the model in a complete and formal sense.

The Systems Biology Markup Language (SBML) (15, 16) has now become the stan-
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dard reference language for reaction network modeling. SBML describes all neces-

sary features pertaining to the reaction network, conservation relations, events, and

rate constants. SBML does not describe all data necessary for modeling, includ-

ing information describing the simulation runs and experimental data from Fig. 2,

which must be stored in separate files. SBML also is not a suitable language for

human comprehension. Thus, software tools are needed to provide an interface be-

tween the user and SBML.

3.1 The JigCell Model Builder

The JigCell Model Builder (referred to herein as the “Model Builder”) is used to

define the components that make up an SBML model. The Model Builder uses a

spreadsheet interface, allowing a large amount of data to be displayed in an orga-

nized manner.

The Model Builder provides functionalities for both first-time users and expert

modelers. The Model Builder supports the definition of events and user-defined

units. An event, such as cell division, can be defined by specifying a condition that

must be met to trigger the event, and the changes that result due to the event. A

major goal of the Model Builder is to minimize the time and errors associated with

translating a regulatory network to a set of equations. As the user enters reaction

equations, rate laws, and functions into their cells in the main spreadsheet, several

other spreadsheets are updated to track the various entities that make up a model.

After the user has finished defining a model using the Model Builder, this model can

be used with other SBML-compliant software to simulate the response of the model

to given conditions.

The Model Builder’s interface is broken into 10 spreadsheets, all accessible by

clicking on the appropriate tab. Fig. 3 shows the “Reactions” spreadsheet. There
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is a spreadsheet for each of the eight SBML components in a model (reactions,

functions, rules, compartments, species, parameters, units and events). There is one

spreadsheet for conservation relations and one spreadsheet for the equations (in-

cluding both ODEs and rule equations).

The “Reactions” spreadsheet is the primary tool used to create the reaction net-

work of a model. The other spreadsheets are either partially or completely filled

by the Model Builder from the “Reactions” spreadsheet. A reaction represents any

chemical transformation, transport, or binding process that can change the amount

of one or more species. Each row defines a single chemical reaction. Fig. 3 shows the

“Reactions” spreadsheet loaded with the frog egg model. The three main columns

in this spreadsheet are: “Reaction,” “Type,” and “Equation”.

1. The “Reaction” column defines the species (reactants and products) and their sto-

ichiometries. A list of substrates separated by ‘+’ signs is entered first. An arrow

(→) is then entered, and is followed by a list of products, also separated by ‘+’

signs. Substrate and product names can contain any combination of letters, num-

bers, underscores, and apostrophes. There is no limit to the number of species

that can be entered as substrates or products. The stoichiometry of a reaction is

defined by placing a number and an ‘*’ character in front of the species (e.g.,

3∗Ma).

2. By picking a rate law from a drop down list in the “Type” column, the user can

specify the kinetics of the reaction being defined. The Model Builder provides

three built-in rate laws (Mass Action, Michaelis Menten, Local) and also allows

users to define their own rate laws in the “Functions” spreadsheet. For all rate

laws other than Local, the Model Builder will enter the associated rate law in

the “Equation” field. The Local type allows the user to define the reaction rate

of a single reaction without creating a new rate law. If the user selects Local,

the equation field will remain empty until the user defines the equation for the
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reaction rate. Local rate laws may contain algebraic expressions with parameters

and species.

3. The “Equation” column specifies the equation for the rate of the reaction. If the

reaction type is not Local, the “Equation” column displays the unsubstituted

equation of the selected rate law until the user edits the rate law equation by

clicking on the cells in this column. Clicking on one of these cells displays the

“Parameters/Modifiers” Editor (Fig. 4), where the user assigns ‘interpretations’

to the rate constants and modifiers. The ‘interpretations’ can be numeric con-

stants, expressions, species or species related expressions. The Model Builder

partially fills the “Parameters/Modifiers” Editor when built-in rate laws are used

(e.g., S1 becomes Ci in Fig. 4 automatically because the user defined the reaction

Ci → Ca). The Model Builder will substitute the user’s interpretations (entered

via the “Parameters/Modifiers” Editor) into the Equation field of the “Reactions”

spreadsheet so that the user can see the final rate law used to govern the reaction.

Expressions are evaluated to numerical values when the model is simulated.

The “Functions” spreadsheet (Fig. 5) is used to create and edit function defi-

nitions. A function definition is a named mathematical function that may be used

throughout the rest of a model. For example, user-defined rate laws are created as

function definitions. Checking the box in the “Rate Law” column causes the newly

created rate law to be included in the drop-down list of rate laws in the “Type”

column of the “Reactions” spreadsheet. Functions are defined with place holders

for arguments of the form A#, where # is some number. The function My rate law

in (Fig. 5) contains five arguments A1−A5. These arguments can be assigned in

the “Parameters/Modifiers” Editor (Fig. 4) when the function is selected as the

rate law for a reaction. Otherwise, to use this function it may be called like this:

My rate law(vwp,Wi,vwpp,Wa,Ma). Any of the function arguments can be a pa-

rameter, species, or algebraic expression.
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The “Rules” spreadsheet (Fig. 6) serves two purposes. First, it displays algebraic

rules, which are the conservation relations in the model. The program deduces these

relations from the stoichiometric matrix of the model and displays each conservation

relation in the form (a1S1 +a2S2 + ...)−Ti = 0, where Ti is the conserved quantity

and a1, a2, . . . are constants calculated from the stoichiometry matrix. The user

cannot edit an algebraic rule on this spreadsheet but may specify how the Model

Builder uses the rule on the “Conservation Relation” spreadsheet. The second pur-

pose of the “Rules” spreadsheet is to create and edit assignment rules. Assignment

rules are used to express equations that set the value of variables. The “Variable”

field in the assignment rule can be a species, parameter or compartment. In the case

of species the “Equation” field sets the quantity to be determined (either concen-

tration or substance amount), in the case of compartments the “Equation” field sets

the compartment’s size, and in the case of parameters the “Equation” field sets the

parameter’s value. The value calculated by the assignment rule’s “Equation” field

overrides the value assigned in the “Compartments,” “Species,” or “Parameters”

spreadsheet.

The next three tabs are used to define compartments, species, and parameters.

A compartment represents a bounded space in which species can be located. Spa-

tial relationships between different compartments can be specified. Modelers are

not required to enter compartment information when defining a model, as a single

compartment called ‘cell’ is created by default. The “Species” spreadsheet (Fig. 7)

provides a list of all species that are part of a chemical reaction or defined in a Rule.

The list of species is generated automatically by the Model Builder, though a user

can add, delete, and modify species. There are several editable attributes associ-

ated with each species. The “Parameter” spreadsheet (Fig. 8) is used by the Model

Builder to manage all parameters and their values associated with a model. A pa-

rameter is used to declare a value for use in mathematical formulae. The Model
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Builder recognizes as a parameter any name on the “Reactions” spreadsheet that is

not defined as a species.

The “Events” spreadsheet (Fig. 9) allows the user to define actions associated

with a model. For example, when modeling the cell cycle, some trigger for cell di-

vision must be defined and the consequences of that division must be specified. The

“Name” column provides an (optional) identifier for an event. The “Trigger” col-

umn defines the conditions under which the event takes place. The format of this

entry allows the user to specify an equality relationship. Whenever the relationship

entered in the “Trigger” column is satisfied, the actions specified in the “Assign-

ments” column will occur. The “Event Assignment Editor” lets the user define the

changes that will occur when an event is executed.

The “Units” Spreadsheet lists all unit types used in the model, along with their

definitions. A unit definition provides a name for a unit that can then be used when

expressing quantities in a model. The Model Builder has a number of basic units

and 5 built-in unit definitions (area, length, time, substance and volume). Complex

unit definitions such as meter/second2 can be created.

The “Conservation Relations” spreadsheet (Fig. 10) is used to view a list of all

conservation relationships that exist between species in the model. The list of con-

servation equations is generated automatically, using Reder’s method (17).

The “Equations” spreadsheet (Fig. 11) allows the modeler to see a list of the

different types of equations that define the model. The user does not edit equations

here, as they are created automatically from data entered on other spreadsheets.

The “Equation” column displays differential equations, assignment rule equations,

conservation relation equations or the condition set on the species when no equation

exists.
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3.2 The JigCell Run Manager

The JigCell Run Manager (referred to herein as the “Run Manager”) lets users define

specifications for an ensemble of simulation runs. Hierarchies of simulations can be

built up, whereby a given simulation inherits parameter changes from a “basal” run

definition. This hierarchical organization of simulations is useful because models are

often validated against a collection of experimental protocols, each one of which re-

quires only slightly different simulation conditions. For example, the budding yeast

cell cycle model must capture the differences among many dozens of mutations of

the wild type organism. If the ‘basal’ run represents the wild-type organism, then the

hierarchy can define unambiguously and compactly the deviations from wild-type

that are necessary to specify each mutant type.

Users input the description of ensembles using 5 spreadsheets: Runs, Basal Pa-

rameters, Basal Initial Conditions, Simulator Settings and Plotter Settings. The

“Runs” spreadsheet (Fig. 12) specifies how to simulate a certain experiment. The

name column can (optionally) be used to identify the experiment being simulated.

The parents column lists all runs from which the row inherits changes. The changes

column lists additional changes to parameters, initial conditions, simulator settings

and plotter settings that are needed for this run. The changes are specified using the

“Changes” editor (Fig. 13), which opens when clicking on the changes cell for a

particular run. The changes for a particular run override the changes inherited from

any parents, and these changes propagate to its children. Color is used to reflect

where the changes are made: Blue is used to indicate changes made in the current

run (locally) and green to indicate changes inherited from a parent run (or some

previous ancestor). This information is also indicated in the “Parents” column of

Fig. 13, which indicates either the name of the ancestor that caused that parameter’s

setting to change, or states “local” if the change was explicitly made by the user for
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this run. Fig. 12 shows a “Runs” spreadsheet for simulating some experiments done

on frog egg extracts to characterize the activation of MPF.

Each row corresponds to a separate experiment. The run named “Interphase”

(on row 1) describes changes to the initial model in order to simulate an extract

starting in interphase. This run is then set as a parent to the run named “Kumagai

and Dunphy 1995 Fig 3C Interphase” on row 6. The run on row 6 inherits all its

parent’s changes and represents an experiment to measure the phosphorylation of

MPF by Wee1 during interphase. The “Changes” column displays changes made by

the current run but not changes inherited from the parents.

The Run Manager provides a “Plot” button on the “Runs” spreadsheet that gen-

erates an immediate simulation for a specified row and then plots the results.

The “Simulator Settings” spreadsheet (Fig. 14) specifies the simulator to be used

and appropriate values for the simulator’s configuration parameters, such as total

time of integration, tolerances, output interval, etc. In this case the simulator chosen

is XPP (18). Other simulators are also provided, such as StochKit (19) (for stochastic

simulation) and Oscill8 (20).

The “Plotter Settings” spreadsheet (Fig. 15) enables the user to specify the vari-

ables to be plotted from a simulation run’s output. The “Plotter Settings” spreadsheet

also contains options to customize the plot by selecting colors, mark styles, whether

to connect points, etc.

3.3 PET: Parameter Estimation Toolkit

The Parameter Estimation Toolkit (PET) is designed to help users explore parameter

space and fit simulation output (e.g., time course simulations) to experimental data.

Typical use of PET follows the modeling process discussed in Section 2:
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1. The user imports an SBML file created by the Model Builder or some other

SBML editor.

2. A basal parameter set is created directly from the SBML file or imported from

the Run Manager’s basal file.

3. Simulation runs are defined in PET or imported from a run file created by the

Run Manager.

4. At this point the user may simulate the model, even though experimental data

have not yet been defined.

5. Experimental data are defined and transforms set up for the simulation runs.

6. Experimental data and model output are compared by the user (Human Analysis)

or by the parameter estimator (Automated Analysis). Parameters are adjusted to

seek a better fit of the model to the data.

PET supports cut and paste of experimental data into and from applications, such

as Microsoft Excel, copying of plots into presentations or other documents, and

generation of PDF files containing plots. PET supports undo and redo of most op-

erations (including all delete operations), semantic checks of user input, and color

coding (e.g., of parameters changed by the user in the “Edit Basals” spreadsheet).

The following subsections detail some general features of PET. Specific exam-

ples of these features are provided in Section 4.

3.3.1 Experimental Data and Transforms

Users enter experimental data and define what transforms to use on the model output

in the “Edit Data” screen (Fig. 16). Transforms convert the time series data gener-

ated by a simulation into a form comparable to the experimental data. For example,

experimental data might measure the time it takes for a specific event to happen

(timelag) or how much of a species must be added to a system to change a steady
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state (threshold), or the viability of a mutant. In these cases, the computer simula-

tion must produce a number comparable to the experimental datum (i.e., measuring

the same observable). Automated parameter estimation routines then take the differ-

ence between the experimental observation and the transformed output of the model,

and attempt to minimize this difference by adjusting parameter values. A transform

might be quite sophisticated. For example, it might need to analyze the time series

output for some measurement (such as cell size) to deduce that an oscillation is

taking place, and its period. Transforms are implemented as FORTRAN functions.

The name of every simulation run defined in the “Edit Simulations” screen

(Fig. 17) appears in the “Edit Data” screen (Fig. 16). In the “Edit Data” screen

the user can select the name of a simulation run and define experimental data and

a transform. Note that some run specifications might not define either experimental

data or a transform. These specifications might be inherited by other runs (e.g., the

“M-phase” and “Interphase” runs in the example in Section 4), or the modeler might

wish to store these specifications for another purpose.

3.3.2 Parameter Exploration and Estimation

A user can explore parameter space by setting parameter values (Fig. 18), clicking

the “Simulate” button, and view the results (Fig. 19). This will generate time course

plots of selected species (Fig. 19). Changes in basal parameters and initial condi-

tions can be made in the “Edit Basals” screen. The user might wish to keep track of

multiple basal sets, which are all displayed in the “Edit Basals” screen. When the

user clicks the “Simulate” button a simulation is run for each basal set checked in the

“Edit Basals” screen, paired with each simulation checked in the “Edit Simulations”

screen. For the example, in Fig. 17 and Fig. 18, sixteen simulations are performed:

the eight simulations checked in Fig. 17 are run for each of the two basal param-
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eter sets checked in Fig. 18. Every simulation performed generates a plot and the

appropriate experimental data from the “Edit Data” screen is plotted with the model

simulation points. This allows the user to quickly compare model simulations with

experimental data.

By manually changing parameters, running simulations, and viewing plots, a user

might discover parameter values that bring the simulations into acceptable agree-

ment with the experimental data. But this manual process is time consuming. PET

also provides automated parameter estimation, which searches for parameter val-

ues that best fit a model to experiments. Automated parameter estimation can be

configured through the “Estimator Settings” screen (Fig. 20) and then run with the

“Estimate” button.

Two algorithms are currently available in PET for automated parameter estima-

tion: ODRPACK95 (21, 22) and VTDirect (23). Both minimize an objective func-

tion defined as the weighted sum of squares of the differences between the model

and experimental data:

E(β ) =
n

∑
i=1

wεi ε
2
i +wδi

δ 2
i , (1)

fi(xi +δi;β ) = yi + εi, for i = 1 . . .n, (2)

where β is the parameter vector (referred to as a parameter set in this chapter), each

fi is a function of the model (e.g., a time course simulation) and could be differ-

ent for each i, xi is the ith independent experimental datum (e.g., time), yi is the ith

dependent experimental datum (e.g., species concentration), δ and ε are the respec-

tive errors attributed to the independent and dependent experimental data, and wδ

and wε are the weights for δ and ε supplied by the user (PET automatically cal-

culates default values for these). The algorithms search for a δ and β to minimize

Equation 1 (note that ε can be calculated from Equation 2 once δ and β are cho-
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sen). Zwolak et. al. (21) and Boggs et. al. (24, 22) explain this objective function in

more detail. ODRPACK95 is a local optimization algorithm based on Levenberg-

Marquardt. VTDirect is a global optimization algorithm based on the “DIViding

RECTangles” algorithm of Jones (23).

When estimating parameters automatically, the user can select which experi-

ments are to be fit by checking them in the “Edit Simulations” screen (Fig. 17).

For a particular “estimation,” the user might allow only certain parameters to be

varied by PET. The fixed parameters might be part of a conserved quantity, have a

known value, or are not well constrained by the current data. Such parameters are

selected as “fixed” by checking the box in the “Fixed” column of the “Estimator

Settings” screen (Fig. 20).

Ranges on each parameter can also be defined (and must be defined for global

optimization with VTDirect). Fig. 20 shows the “Estimator Settings” screen in PET

where the ranges can be edited. When the parameter range extends over multiple

orders of magnitude, then the user may wish to use a logarithmic scale by checking

the box in the “Log” column. This feature is only available for global estimation

and affects the way VTDirect searches parameter space. For example, for a linear

scale with a range of 0.01 to 1000 for some parameter p1, VTDirect might select

values of approximately 200, 400, 600, and 800. If a logarithmic scale is selected,

the equivalent points selected by VTDirect would be 0.1, 1, 10, and 100. In the linear

case, small values of p1 are never explored, which might not be desirable.

Weights can be assigned to the experimental data to reflect relative confidence in

the data in the “Estimator Settings” screen (Fig. 20). These are the weights appear-

ing in Equation 1. PET assigns default values for the weights of

wδi
=

1

x2
i +1

, wεi =
1

y2
i +1

.
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These weights can reflect error bounds on the data determined by repeats of the

experiment, if available. Larger values for the weight can be assigned for data with

small error bounds. Similarly, smaller values for the weight can be assigned for data

with large error bounds.

4 A Modeling Example

We now provide a detailed example of how our tools are used to build a model, based

on the modeling process described in Section 2. The model used here was derived

from Marlovits et. al. (1) and Zwolak et. al. (25, 26) and can be seen in Fig. 1. It

models the regulation of entry into mitosis in frog egg extracts by MPF, Cdc25,

and Wee1. Experimental data from Kumagai and Dunphy (27, 28) and Tang et.

al. (29) are fit using local and global optimization. We discuss an alternative model

motivated by the parameter set returned from the global optimizer. Implementing

the alternative model would continue the modeling process beyond this example.

4.1 Entering the Molecular Network

We begin by entering the molecular network from Fig. 1 into the Model Builder.

Each reaction appears as a line in the reaction spreadsheet (Fig. 3). Michaelis-

Menten kinetics are used for the forward and reverse reactions of Cdc25 and Wee1.

A user defined rate law (My rate law) is used to define MPF phosphorylation and

dephosphorylation by the active forms of Cdc25 (Ca) and Wee1 (Wa) as well as

a small residual activity of the inactive forms of Cdc25 (Ci) and Wee1 (Wi). Two

species, L and L2, are added to the model for comparison to measurements of la-

beled MPF. L is used to measure the rate at which Cdc25 removes the phosphate
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group from MPF (Kumagai and Dunphy (28) Figure 3C). L2 is used to measure the

rate at which Wee1 adds the phosphate group to MPF (Kumagai and Dunphy (28)

Figure 4B). The map of names used in the model to the biological names can be

seen in Fig. 1.

The Marlovits (1) parameter set (βMarlovits in Tab. 1) is entered into the Model

Builder via the “Parameters” spreadsheet, and exported to a basal file for later use

with the Run Manager and PET. Initial conditions for the species are defined in the

“Species” spreadsheet for interphase (Tab. 2). Interphase is defined as a state of low

MPF and Cdc25 activity and high Wee1 activity.

In some experiments, a buffer is added to an extract, thereby diluting the en-

dogenous concentrations of proteins in the extract. The dilution factor is set to 1 for

the experiments from Kumagai and Dunphy Figures 3C and 4B (28). For the other

experiments we use a dilution factor (“Dilution”) relative to the Kumagai and Dun-

phy (28) experiments. The dilution of species in the model is handled in the Run

Manager, as discussed in Section 4.2. For Wee1 and Cdc25 we would like the total

concentration to be scaled to 1, even after they have been diluted, and this can be

specified in the “Rules” spreadsheet of the Model Builder. In the “Species” spread-

sheet we create two new species and assign them values in the “Rules” spreadsheet

with the rules CaScaled = Ca/Dilution and WaScaled = Wa/Dilution.

4.2 Defining Simulation Runs

In this section, we define simulation runs in the Run Manager. Each experiment

has a line in the Run Manager and all the values set for the runs can be seen in

Fig. 12. The Run Manager reads in the SBML file containing our model and the file

containing basal parameter values and initial conditions. One way to specify these

files is through the “File” menu.
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Experiments from Kumagai and Dunphy Figures 3C and 4B (28), Kumagai and

Dunphy Figure 10A (27), and Tang et. al. Figure 2 (29) specify what state the extract

was in when the experiment began, either interphase or M-phase. Initial conditions

for the model are created to mimic these extract states, and the values of these initial

conditions can be seen in Tab. 2.

For the initial conditions for M-phase and interphase we create two runs in the

Run Manager called “M-phase” and “Interphase” respectively (Fig. 12). All runs

starting in M-phase will inherit from the M-phase basal run. Similarly, all runs start-

ing in interphase will inherit from the Interphase run.

Experiments in Kumagai and Dunphy Figure 10A (27) and Tang et. al. Fig-

ure 2 (29) add a buffer that dilutes the extracts by a factor of 0.83 and 0.67, respec-

tively. We handle this by creating a simulation run for each case, called “Dilution

= 0.83” and “Dilution = 0.67”. These runs set the parameter Dilution to the correct

value. Then we create a simulation run “Dilute” that applies the parameter Dilution

to all species that are diluted (e.g., CT =CT ·Dilution, WT =WT ·Dilution, etc.). The

initial conditions for the species are diluted by their assignments (Tab. 2). None of

these runs are intended to be simulated. They exist just to be inherited by runs that

use diluted species.

4.3 Entering the Experimental Data

With this model we will attempt to reproduce the experimental data from Kumagai

and Dunphy (27, 28) and Tang et. al. (29). The data from these papers (images of

gels, the points on plots, etc.) are quantified in Tab. 3. These data are entered into

PET via the “Edit Data” screen (Fig. 16). A basal set is defined in the “Edit Basals”

screen from the basal file containing the Marlovits parameters. For each experi-

ment the “time series” transform is selected in the “Edit Data” screen, the measured
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species is selected, and the experimental data is entered so that the optimization

code will be able to compare simulation output to the experimental data. Now a set

of simulations can be run and we can see how well the Marlovits parameters fit the

experimental data (Fig. 21).

4.4 Performing Local Parameter Estimation

We choose the Marlovits parameters as an initial guess to be used by the local op-

timization algorithm ODRPACK95 and set some reasonable lower bounds on the

parameters (Tab. 4). Only the simulation runs that we wish to fit to data are checked

in the “Simulations” screen of PET, and only the parameters we wish to be estimated

are checked in the “Estimator Settings” screen. We use the default settings for ODR-

PACK95, which, in practice, are usually adequate. As the initial guess we select the

“Marlovits (1998)” basal set. The optimizer returns the parameters βlocal in Tab. 1,

and we can compare the results to the Marlovits set by running simulations on the

basal set and on the fitted parameter values. (Running the simulation would actually

show a window similar to Fig. 19, but here we show the plots more compactly in

Fig. 21). We see from Fig. 21 that the parameter estimator does return parameters

that fit the data better. We can also see that the parameter values are close to the

starting value of Marlovits (Tab. 1).

4.5 Global Parameter Estimation

In some cases the user may not have a good starting point for the parameters, or the

user might wish to explore parameter space in search of other good parameter sets.

PET supports these cases by providing a global parameter estimation algorithm, VT-
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Direct. VTDirect requires upper and lower bounds on the parameter values. In our

example, we assume that we know little about the true values of the parameters. We

give bounds that span several orders of magnitude, and we use a logarithmic scale

to distribute the search evenly across these orders of magnitude. Since we use a log-

arithmic scale, we must set non-zero lower bounds. We set most lower bounds to

10−6, which allows these parameters to get sufficiently close to zero to have a negli-

gible quantitative effect on the model. The bounds are recorded in Tab. 4. VTDirect

is run with the settings from Tab. 5, and the resulting parameter set is passed to

ODRPACK95 for refinement. We reset the parameter bounds for the ODRPACK95

run to those of Tab. 4. ODRPACK95 does not use the logarithmic scale setting and

therefore can have lower bounds of 0 for this run. The global refined parameter set

is called βglobal in Tab. 1.

4.6 Next Steps

Visually, the parameters generated by the global and local optimization runs both

fit the experimental data (Fig. 21). The parameter sets (βlocal and βglobal in Tab. 1)

are similar, except for the values of vc, v′′′c , and Kmc. For Kmc = 20 and CT = 1, the

Michaelis-Menten rate law for reaction Ci → Ca in Fig. 1 should be replaced by a

mass action rate law, (vc/Kmc ·Ma ·Ci). This change to the model is addressed in

Zwolak et. al. (26), and we will not go through the analysis here.

Next, we can create another variation of the model by adding experimental data

for timelags and thresholds, as discussed in Zwolak et. al. (25). Automated param-

eter estimation can be run to find parameter values that fit these new experiments,

as well as the experiments discussed in this section. The model can continue to be

refined and expanded in this way to test further hypotheses and achieve new goals.
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The files for the modeling example and its variations are distributed with JigCell

and PET and can be found at http://mpf.biol.vt.edu/MMRN chapter/.

5 Summary

We have demonstrated how a modeler would enter all of the necessary information

needed to define, simulate, and validate a model of a molecular regulatory network.

Advanced support tools like the JigCell Model Builder make it easy to check the

syntactic consistency and completeness of the model. This makes it possible to con-

struct larger models than can be done “by hand” and thus opens the possibility of

constructing more complex models than previously possible. The JigCell Run Man-

ager provides a way to organize and manage the information needed to define the

ensemble of simulation runs for validating the model against a specific set of ex-

periments. PET provides a tool to help the user compare simulation output to ex-

perimental data. PET also provides automated tools for finding “best fitting” values

of the rate constants in a model. Our example walks the reader through a complete

cycle of entering the model, testing it for initial validity, and using parameter esti-

mation to improve the model.

While tools such as JigCell and PET allow modelers to build and test larger

models than were possible before, there is still a long way to go before it will be

possible to build models that capture the complex regulatory systems within mam-

malian cells. Current models are defined as a single monolithic block of reaction

equations, an approach that is reaching its limits. In future, modelers will be able to

express their models as a collection of interacting components, thus allowing them

to build large models from smaller pieces. Improvements are also needed in simula-

tors (including the ability to perform efficient stochastic simulations), in parameter

estimation, and in computer performance.
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MPFMPFP

Cdc25Cdc25P

Wee1PWee1

Species Description Phosphorylated
Ma Active MPF no
Mi Inactive MPF yes
Ca Active Cdc25 yes
Ci Inactive Cdc25 no
Wa Active Wee1 no
Wi Inactive Wee1 yes

dMa

dt
= (v′c ·Ci + v′′c ·Ca) ·Mi − (v′w ·Wi + v′′w ·Wa) ·Ma

dCa

dt
=

vc ·Ma ·Ci

Kmc +Ci
−

v′′′c · vc ·Ca

Kmcr +Ca

dWa

dt
= −

vw ·Ma ·Wa

Kmw +Wa
+

v′′′w · vw ·Wi

Kmwr +Wi

Fig. 1: Network diagram, mapping of species names, and the corresponding set
of ordinary differential equations for a model of the mitotic regulatory system in
frog eggs. The regulation of MPF (Mitosis Promoting Factor) by Wee1 (kinase) and
Cdc25 (phosphatase) controls when the cell enters mitosis. Notice the two positive
feedback loops whereby MPF actives Cdc25 (MPF’s activator) and inactivates Wee1
(MPF’s inactivator). The active forms (Ma, Ca, and Wa) have associated differential
equations. The total amounts of MPF (MT ), Wee1 (WT ) and Cdc25 (CT ) are con-
served (i.e., remain constant throughout the process). Mi +Ma = MT , Wi +Wa =WT ,
and Ci +Ca =CT . Therefore, the inactive forms (Mi, Ci, and Wi) do not have differen-
tial equations because they can be calculated from these conservation relationships.
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Network
Reaction Rate

Constants

Idea

Simulate

Compare
Experiments to Simulations

Analysis
Automated

Analysis
Human Publication

Search
Literature

Experimental
Data

Simulation
Runs

Hypothesis

(ODEs, SDEs, PDEs, etc.)
Mathematical Model

Simulation Output

Fig. 2: The modeling process. Once the modeler has generated a testable hypothesis
about the organism, he or she must assemble the four necessary collections of infor-
mation (experimental data, simulation runs, reaction network, and rate constants).
This defines both the mathematical model and the behavior that the model must re-
produce. The modeler then will repeatedly simulate and update the model, perhaps
with the aid of automated analysis tools, until an acceptable result is obtained.
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Fig. 3: The “Reactions” spreadsheet.
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Fig. 4: The “Parameters/Modifiers” Editor.
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Fig. 5: The “Functions” spreadsheet.
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Fig. 6: The Model Builder “Rules” spreadsheet. The algebraic rules are automati-
cally created by the Model Builder from the conservation relations. The lines for
kw and kc define the rates for the reactions of L2 and L, respectively. CaScaled and
WaScaled scale the concentrations of Ca and Wa to 1 after they have been diluted
by Dilution. See Section 4.1 for more about dilution.
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Fig. 7: The Model Builder “Species” spreadsheet.
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Fig. 8: The “Parameter” spreadsheet.
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Fig. 9: The “Events” spreadsheet. The symbol “@time” represents time in the sys-
tem of differential equations. This event sets “RecordTimelag” to the value of time
when the “Trigger” becomes true and is used to get the time for active MPF (Ma)
to reach half the total MPF concentration (MT). This is provided as an example of
how events are defined, but it is not used in the later modeling example.
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Fig. 10: The “Conservation Relations” spreadsheet.



Modeling Molecular Regulatory Networks with JigCell and PET 39

Fig. 11: The “Equations” spreadsheet.
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Fig. 12: The “Runs” spreadsheet.
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Fig. 13: The “Changes” Editor for a particular run. In the “Setting” column of MT
the cell would be colored blue to represent a local change. In the “Setting” column
for CT, WT, and Dilution, the cell would be colored green to represent changes
inherited from a parent run.
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Fig. 14: The “Simulator Settings” spreadsheet.
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Fig. 15: The “Plotter Settings” spreadsheet.
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Fig. 16: The “Edit Data” screen shows experimental data and the set up for trans-
forms. This figure shows a list of numbers for the time series concentration of L2.
The “Time Series” transform is selected for the type of experimental data.
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Fig. 17: The “Edit Simulations” screen showing parameter and initial condition val-
ues. PET highlights inherited changes in gray. When a parent is selected in the “In-
herits” list, the changes inherited from that parent are highlighted in a pastel purple
(also shown in gray in this figure).
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Fig. 18: The “Edit Basals” screen lets users define basal sets of initial conditions
and parameters. Changes made to parameters and initial conditions are highlighted
in green (parameters vwp and vwpp in this figure). The “Commit Changes” but-
ton saves changes and removes the highlight colors. Alternatively, the “Discard
Changes” button will restore all changed values to the last commit or the original
basal set, whichever is more recent.
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Fig. 19: The PET report window shows the plots using the basal set named
“Marlovits (1998)” (left column) side-by-side with plots using the basal set shown
in Fig. 18 (right column). Each simulation run takes a row in the grid of plots. The
simulation run “Kumagai and Dunphy 1995 Figure 3C Interphase” is on the first
row, “Kumagai and Dunphy 1995 Figure 3C M-phase” is on the second row, and so
forth. As many simulation runs and basal sets will be simulated as the user checks
in the “Edit Simulations” (Fig. 17) and “Edit Basals” (Fig. 18) screens in PET. This
feature of PET allows the user to quickly compare multiple basal sets to experiments
and assess which basal set best fits experimental data.
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Fig. 20: The “Estimator Settings” screen shows the parameters to be estimated and
ranges on those parameters (left), experimental data weights (center), and algorithm
settings (right).
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Table 1: Parameter sets βMarlovits from Marlovits et. al. (1), βlocal from the local
parameter estimator, and βglobal from the global parameter estimator. The weighted
sum of squares (the value of the objective function E) for each estimated set is
shown in the last row.

Parameter βMarlovits βlocal βglobal

vw 2 1.7 3.0
v′w 0.01 2.4e-4 3.5e-6
v′′w 1 1.4 2.4
v′′′w 0.05 0.027 0.014
vc 2 3.0 120
v′c 0.017 0.015 0.015
v′′c 0.17 0.18 0.18
v′′′c 0.05 0.017 0.0027
Kmw 0.1 0.01 0.099
Kmwr 1 0.01 0.01
Kmc 0.1 0.14 20
Kmcr 1 0.14 3.4
E 0.018 0.059
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(b) Kumagai 95 Figure 3C M-phase
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(c) Kumagai 95 Figure 4B Interphase
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(d) Kumagai 95 Figure 4B M-phase
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(e) Kumagai 92 Figure 10A Interphase
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(f) Kumagai 92 Figure 10A M-phase
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(g) Tang 93 Figure 2 Interphase
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Fig. 21: The parameter set “Marlovits (1998)” (βMarlovits), “Beta Local” (βLocal), and
“Beta Global” (βGlobal) are plotted along with the experimental data for comparison.
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Table 2: Initial conditions of the species to model extracts starting in M-phase or
Interphase. For example, in Interphase the initial value of inactive MPF (Mi) is set
to the total amount of MPF (MT) while the initial value of active MPF (Ma) is set
to 0.

Species M-phase Interphase
Ma MT 0
Mi 0 MT
Ca CT 0
Ci 0 CT
Wa 0 WT
Wi WT 0
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Table 3: Experimental data quantified and compiled for the frog egg extract model.

Experiment Species Time Concentration
Kumagai and Dunphy Figure 3C (28) Interphase L2 2 1

4 1
16 1

Kumagai and Dunphy Figure 3C (28) M-phase L2 4 0
16 0

Kumagai and Dunphy Figure 4B (28) Interphase L 2 1
4 1
8 0.85

Kumagai and Dunphy Figure 4B (28) M-phase L 2 0.75
4 0.51
8 0.21

Kumagai and Dunphy Figure 10A (27) Interphase Ca 5 0.75
10 0.5
20 0.1
40 0

Kumagai and Dunphy Figure 10A (27) M-phase Ca 1.25 0.8
2.5 0.9
5 1

10 1
Tang et. al. Figure 2 (29) Interphase Wa 7.5 0.5

15 1
Tang et. al. Figure 2 (29) M-phase Wa 2 0.5

5 0
7 0

10 0
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Table 4: Lower and upper bounds for the parameters. VTDirect will only explore
parameter space within these bounds. We use different lower bounds for VTDirect
and ODRPACK95, as explained in the text.

Parameter Lower (VTDirect) Lower (ODRPACK95) Upper
vw 1e-6 0 1e4
v′w 1e-6 0 1e4
v′′w 1e-6 0 1e4
v′′′w 1e-3 0 100
vc 1e-6 0 1e4
v′c 1e-6 0 1e4
v′′c 1e-6 0 1e4
v′′′c 1e-3 0 100

Kmw 0.01 0.01 100
Kmwr 0.01 0.01 100
Kmc 0.01 0.01 100
Kmcr 0.01 0.01 100
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Table 5: Settings used by VTDirect for the example.

Setting Value
EPS 1.0

Sum of Squares Tolerance 1.0e-10
Maximum Iterations 1.0e4

Maximum Evaluations 1.0e5


