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Overview of Probability for CBB

Original References

• Textbook: Probability, Statistics, and

Queueing Theory with Computer Science

Applications, Arnold O. Allen

• Additional reference: Probability and

Statistics with Reliability, Queuing, and

Computer Science Applications, Kishor S.

Trivedi

CS 3824 Introduction to CBB 2



Basic Concepts of Probability

Key Concepts in Probability

• Sample, event, or probability space. A

set Ω.

• Elementary event. An element ω ∈ Ω.

• An event. A subset A ⊆ Ω.
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Basic Concepts of Probability

Axioms of a Probability

Measure

A probability measure Pr is a real function

on a family of events F that satisfies these

axioms.

P1 If A ∈ F, then 0 ≤ Pr [A].

P2 Pr [Ω] = 1.

P3 If A,B ∈ F and A ∩B = ∅, then

Pr [A ∪B] = Pr [A] + Pr [B].

P4 If A1, A2, A3, . . . are such that Ai ∩Aj = ∅
when i 6= j, then

Pr





∞
⋃

n=1

An



 =
∞
∑

n=1

Pr [An] .

CS 3824 Introduction to CBB 4



Basic Concepts of Probability

Interpreting the Axioms

P1 Probabilities are always nonnegative.

P2 The probability of the certain event is

always 1.

P3 A probability measure is additive when

applied to the union of two mutually

exclusive events. We can use P2 and P3

to show that

Pr
[

Ā
]

= 1 − Pr [A] .

P4 A probability measure is additive when

applied to the countable union of

mutually exclusive events. No amount of

induction will make P3 imply P4. Axiom

P4 is vacuously true if F is finite.
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Basic Concepts of Probability

Discrete Example: Coin Flips

• Sample space Ω consists of possible

sequences of 3 coin flips. Elementary

events:

ω1 = H,H,H

ω2 = H,H, T

ω3 = H,T,H

ω4 = H,T, T

ω5 = T,H,H

ω6 = T,H, T

ω7 = T, T,H

ω8 = T, T, T

• Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}
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Basic Concepts of Probability

Coin Flips Continued

• A probability measure Pr for a discrete

sample space is determined by its values

on the elementary events.

Pr [ω1] = .1

Pr [ω2] = .05

Pr [ω3] = 0

Pr [ω4] = .4

Pr [ω5] = .15

Pr [ω6] = .05

Pr [ω7] = .10

Pr [ω8] = .15

• It is easy to verify P1–P4 for Pr. Hence

Pr is indeed a probability measure.
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Basic Concepts of Probability

Verifying the Axioms

For any A ∈ F,

Pr [A] =
∑

ω∈A
Pr [ω] . (1)

Verify P1–P4:

P1 True since every Pr [ω] ≥ 0.

P2 True since

Pr [Ω] =
8
∑

i=1

Pr [ωi]

= 1.

P3 Follows from Equation 1.

P4 Vacuously true.
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Basic Concepts of Probability

Notes on Coin Flips

• We have slightly simplified notation so

that Pr [ω1] means Pr [{ω1}].

• Note that this Pr does not correspond to

the probability measure that would arise

from independent coin flips.
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Basic Concepts of Probability

Continuous Example: Unit

Interval

• Sample space Ω is the unit interval [0,1].
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Basic Concepts of Probability

Unit Interval Continued

• To define a probability measure Pr in this
case, it suffices to define it for the
intervals:

Pr [a, b] = b− a.

• Verifying P1–P4 requires an inductive
proof.

• This is the continuous version of uniform
probability.

• In the theory of integration, one writes

Pr [A] =
∫

A
1.

This integral is also known as the
Lebesgue measure of the set A. It just
formalizes our notion of the cumulative
“length” of A. And it formalizes what it
means that we can “integrate” over A.
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Basic Concepts of Probability

More Notes on the Unit

Interval

• We have again simplified notation so that

Pr [a, b] means Pr [[a, b]].

• We do not actually do the verification of

P1–P4. It would take some time to make

a careful proof.
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Random Sampling

Random Sampling

• Can use uniform probability on a unit

interval to define a random real number

r between 0 and 1. The probability that

r comes from any interval [a, b] is

proportional to the size of the interval:

Pr [a ≤ r ≤ b] = b− a.

That is, r is just as likely to be ≤ 1/2 as

it is ≥ 1/2.

• Cannot use uniform probability to define a

random real number r between 0 and

∞. Measure of the interval [0,∞) is

infinite, not 1. Need to assign to an

interval [a, b] “near infinity” a probability

“near 0.”
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Random Sampling

Notes on Random Sampling

• Once again we have expanded our

notation by using Pr [a ≤ r ≤ b] to mean

Pr [a, b].

• Since

Pr [r = a] = Pr [a ≤ r ≤ a]

= 0,

the probability that any particular point in

the unit interval is sampled is zero.
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Random Sampling

Random Sample Exercise

• Sample space Ω = {1,2, . . . ,1000}

• Uniform probability measure:

Pr [A] =
|A|

1000

for all A ⊆ Ω

• EXERCISE. Suppose we want to know

the probability that a randomly sampled

element of Ω is prime.

– What is the event A that corresponds

to such a sample?

– What is Pr [A]?
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Conditional Probabilities

Conditional Probability

Normal setup: probability space Ω; events

are subsets A,B,C, . . . ⊆ Ω; probability

measure Pr. Useful new concepts:

• Conditional probability:

Pr [A | B] =
Pr [A ∩B]

Pr [B]

Always assume Pr [B] > 0.

• Independent events:

Pr [A ∩B] = Pr [A] Pr [B]

• Disjoint events:

A ∩B = ∅,
so

Pr [A ∩B] = 0.
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Conditional Probabilities

Example

A B

C
1
16

1
16

D

1
32

5
32

7
32

11
32

3
32

1
32

Pr [A] =
1

2

Pr [B] =
1

2

Pr [C] =
1

4

Pr [D] =
9

32
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Conditional Probabilities

Conditional Probabilities

A B

C
1
16

1
16

D

1
32

5
32

7
32

11
32

3
32

1
32

Pr [C | A] =
1

4

Pr [B | C] = ?

Pr [D | C] = ?

Pr
[

D | C̄] = ?
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Conditional Probabilities

Independent Events

A B

C
1
16

1
16

D

1
32

5
32

7
32

11
32

3
32

1
32

• A and C are independent because

Pr [A ∩ C] =
1

2
× 1

4

= Pr [A] Pr [C] .

• Are B and C independent ?
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Conditional Probabilities

More Independent Events?

A B

C
1
16

1
16

D

1
32

5
32

7
32

11
32

3
32

1
32

• Are A and D independent ?

• Are C and D independent ?
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Law of Total Probability

Partition of Sample Space

A set of events {A1, A2, . . . , An} is a partition

of Ω if

1. Whenever i 6= j, then

Ai ∩Aj = ∅;

2. For all i, where 1 ≤ i ≤ n,

Pr [Ai] > 0;

3.

A1 ∪A2 ∪ · · · ∪An = Ω.

Corresponds to case analysis.
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Law of Total Probability

Law of Total Probability

Suppose {A1, A2, . . . , An} is a partition of Ω.

Then, for any event A ⊆ Ω, we have

Pr [A] =
n
∑

i=1

Pr [Ai] Pr [A | Ai] .

PROOF.

Combine

Pr [A] =
n
∑

i=1

Pr [A ∩Ai]

with

Pr [A ∩Ai] = Pr [Ai] Pr [A | Ai] .
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Law of Total Probability

Example

Partition {A,B,C} of Ω:

A B C

D

1
4

1
2

1
4

By Law of Total Probability,

Pr [D] = Pr [A] Pr [D | A] + Pr [B] Pr [D | B]

+ Pr [C] Pr [D | C]

=
1

4
× 1

4
+

1

2
× 1

2
+

1

4
× 1

8

=
11

32
.
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Bayes Theorem

Bayes Theorem

Idea is to reverse the conditions in the

conditional probabilities.

Pr [B | A] =
Pr [B ∩A]

Pr [A]

=
Pr [B] Pr [A | B]

Pr [A]

Use to solve for fourth probability when three

are known.
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Probability Examples

Trivedi Example 1.12

At the Triangle Universities Computation

Center, 15% of the jobs are from Duke, 35%

from UNC, and 50% from NCSU. Suppose

the probabilities that a job requires operator

setup are 0.01, 0.05, and 0.02, respectively.

1. What is the probability that a random job

requires operator setup?

2. What is the probability that a random job

requiring operator setup came from UNC?
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Probability Examples

Events: Asetup, BDuke, BUNC, BNCSU.

1. By Law of Total Probability,

Pr
[

Asetup

]

= Pr
[

BDuke

]

Pr
[

Asetup | BDuke

]

+ Pr
[

BUNC

]

Pr
[

Asetup | BUNC

]

+ Pr
[

BNCSU

]

Pr
[

Asetup | BNCSU

]

= (0.15)(0.01) + (0.35)(0.05)

+ (0.50)(0.02)

= 0.029.
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Probability Examples

2 By Bayes Theorem,

Pr
[

BUNC | Asetup

]

=
Pr

[

BUNC

]

Pr
[

Asetup | BUNC

]

Pr
[

Asetup

]

=
(0.35)(0.05)

0.029

≈ 0.603.
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Random Variables

Random Variables

Event space Ω

Probability measure Pr

Random variable X

• Random variable X is a real function

defined on the elementary events.

• Corresponds to a measurement of a

random model or sample.

• Probabilities Pr [X = 5] and

Pr [−7.5 ≤ X < 8.75] are well-defined.
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Random Variables

Counting Example

Sample space consists of variable-length

messages γ (bit-strings). Think of a message

as received one bit at a time. The probability

that the next bit received is the last is

uniformly ρ (0 < ρ < 1). Let the random

variable X be the length of the message:

X(γ) = |γ|.

• X is a discrete random variable.

• We compute

Pr [X = n] = (1 − ρ)n−1ρ.

• X(γ) = n holds for exactly 2n elementary

events (messages).
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Random Variables

Continuous Measurement

Communication time between two nodes in

the campus network is random. Let X be the

random variable that gives the time for a

certain message to transit from ap1.cs.vt.edu

to arabidopsis.cs.vt.edu.

• Pr [X = t] = 0 for any t.

• X is a continuous random variable. It

can take on an uncountable number of

values.

• Probability on intervals makes more sense:

Pr [a ≤ X ≤ b] may well be positive.
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Random Variables

Computing Probabilities

Intuitively

Pr [a ≤ X ≤ b] =
∑

x
a≤x≤b

Pr [x] .

But this only works for discrete random

variables. We use some auxiliary functions to

help us compute probabilities.

• Probability Mass Function

pX(x) = Pr [X = x]

• (Cumulative) Distribution Function

FX(x) = Pr [X ≤ x]

• Density Function

fX(x) =
dFX(x)

dx
,

where defined.
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Random Variables

Auxiliary Functions

Event space Ω

Probability measure Pr

Random variable X

�
�

�
�

�
�

��

@
@

@
@

@
@

@@

Probability Distribution Density
Mass Function Function

Function
(Discrete (Discrete and (Continuous

only) Continuous) only)
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Random Variables

Example One

Two branch banks, b1 and b2, submit

transactions to central accounting daily. The

number of transactions submitted by either

has a uniform distribution between 1 and

1000 daily. Let X1 and X2 be the number of

transactions from b1 and b2, respectively,

today.

• Discrete or continuous ?

• pX1
(n) = pX2

(n) = ?

•

FX1
(n) =



































0 n ≤ 0

n

1000
1 ≤ n ≤ 1000

1 1000 < n
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Random Variables

Example One (Continued)

• Let X = X1 +X2, the total number of
transactions received today.

pX(n)

= ?

=



























0 n < 2 or n > 2000

n− 1

(1000)2
2 ≤ n ≤ 1001

2001 − n

(1000)2
1002 ≤ n ≤ 2000

• Can you plot pX(n) and FX(n)?
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Random Variables

Example Two

Suppose a component C fails at a time given

by an exponential random variable with

parameter α. Let X be the random variable

that equals the time of failure.

Is X discrete or continuous ?

The distribution function for X is

FX(t) = Pr [C fails by time t]

=















0 t ≤ 0

1 − e−αt 0 < t

Verify that this is a distribution function.
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Random Variables

Example Two (Continued)

• The density function for X is

fX(t) =
dFX(t)

dt

=















0 t ≤ 0

αe−αt 0 < t

• To compute the probability that C fails in

an interval [a, b], where 0 ≤ a ≤ b, just

integrate the density function

Pr [a ≤ X ≤ b] =
∫ b

a
fX(t) dt

= e−αa − e−αb

• Verify that
∫ ∞

−∞
fX(t) dt = 1.
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Random Variables

Note on the Exponential

Distribution

• Note that the density function for

exponential R.V. X with parameter α can

be defined with either fX(0) = 0 or

fX(0) = α. Actually ANY finite value will

do. A difference in value between two

density functions at only a countable

number of points never makes a

difference in the distribution function.
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Random Variables

Example Two (Continued)

Conditional Distribution Function

Suppose 0 ≤ R ≤ t. If we know that C is still

functioning at time R, we may be interested

in the conditional distribution function for X.

Conditional distribution function:

Pr [X ≤ t | R ≤ X]

=
Pr [X ≤ t and R ≤ X]

Pr [R ≤ X]

=
Pr [R ≤ X ≤ t]

Pr [R ≤ X]
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Random Variables

Example Two (Concluded)

• Conditional distribution function:

Pr [X ≤ t | R ≤ X] =
FX(t) − FX(R)

1 − FX(R)

=
e−αR − e−αt

e−αR

= 1 − e−α(t−R)

• We just get the unconditional distribution

function for X shifted by R:

Pr [X ≤ t | R ≤ X] = FX(t−R).

The exponential distribution is called

memoryless for this reason.
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Random Variables

Exercise

Let X be a random variable with a uniform

continuous distribution on the interval [a, b],

where a < b.

• What is the probability mass function for

X ?

• What is the density function for X

?

• What is the distribution function for X

?

• Suppose a < c < (a+ b)/2. Compute

Pr [X ≤ c | X ≤ (a+ b)/2] = ?
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Parameters of Random Variables

Expected Value and Variance

� -

6
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ll
µµ− σ µ+ σ x

f(x)

• Expected Value µ measures the “central

value” of the distribution. Also called

mean value or average value.

• Variance σ2 measures the “spread” of

the distribution.

CS 3824 Introduction to CBB 41



Parameters of Random Variables

Expected Value

• Discrete Random Variable X. Let

x1, x2, x3, . . . be the finite or infinite

sequence of points x at which pX(x) > 0.

E [X] =
∑

xi

xipX(xi),

provided
∑

xi

|xi|pX(xi) < ∞.

• Continuous Random Variable Y .

E [Y ] =
∫ ∞

−∞
yfY (y) dy,

provided
∫ ∞

−∞
|y|fY (y) dy <∞.

• Alternate notation for expected value is

µ = µX.
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Parameters of Random Variables

Variance

• Variance for random variable X:

Var [X] = E
[

(X − µX)2
]

,

if the expected value is defined.

• Alternate notation for variance is σ2 = σ2
X.

• Square root of variance is σ, the

Standard Deviation.
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Parameters of Random Variables

Variance Particulars

• Discrete Random Variable X. Let

x1, x2, x3, . . . be the finite or infinite

sequence of points x at which pX(x) > 0.

Var [X] =
∑

xi

(xi − E [X])2pX(xi),

provided the sum is finite.

• Continuous Random Variable Y .

Var [Y ] =
∫ ∞

−∞
(y − E [Y ])2fY (y) dy,

provided the integral is finite.

CS 3824 Introduction to CBB 44



Parameters of Random Variables

Uniform Discrete Random

Variable

Discrete random variable X has positive

probability at n points x1, x2, . . . , xn. Then

pX(x) =







1

n
x ∈ {x1, x2, . . . , xn}

0 otherwise

• Expected Value.

E [X] =
n
∑

i=1

xipX(xi)

=

n
∑

i=1

xi

n
.
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Parameters of Random Variables

Uniform Discrete Random

Variable Continued

Suppose xi = i.

• Expected Value.

E [X] =

n
∑

i=1

xi

n

=
n(n+ 1)/2

n

=
n+ 1

2
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Parameters of Random Variables

Uniform Discrete Random

Variable Concluded

• Variance.

Var [X] =
n
∑

i=1

(i− (n+ 1)/2)2

n

=
(n− 1)(n+ 1)

12

• Standard Deviation. For large n,

σX ≈ n√
12

≈ n

3.46
.

CS 3824 Introduction to CBB 47



Parameters of Random Variables

Uniform Continuous Random

Variable

Y has a uniform continuous distribution over
the interval [a, b].

fY (y) =















1

b− a
a ≤ y ≤ b

0 otherwise

Expected Value.

E [Y ] =
∫ ∞

−∞
yfY (y) dy

=
∫ b

a

y

b− a
dy

=
b2

2(b− a)
− a2

2(b− a)

=
b2 − a2

2(b− a)

=
b+ a

2
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Parameters of Random Variables

Uniform Continuous Random

Variable Continued

Variance.

Var [Y ] =
∫ ∞

−∞
(y − E [Y ])2fY (y) dy

=
∫ b

a

(y − E [Y ])2

b− a
dy

=
1

b− a

∫ b

a

(

y − b+ a

2

)2

dy

=
1

b− a

∫ b

a
y2 − 2y

b+ a

2
+

(

b+ a

2

)2

dy

=
1

b− a

[

b3 − a3

3
− (b2 − a2)(b+ a)

2

+
(b− a)(b+ a)2

4

]
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Parameters of Random Variables

Uniform Continuous Random

Variable Concluded

Var [Y ]

=
1

b− a

[

b3 − a3

3
− (b2 − a2)(b+ a)

2

+
(b− a)(b+ a)2

4

]

=
b2 + ab+ b2

3
− b2 + 2ab+ a2

4

=
4b2 + 4ab+ 4a2 − (3b2 + 6ab+ 3a2)

12

=
(b− a)2

12

Standard Deviation

σ =
b− a√

12
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Parameters of Random Variables

Exponential Random

Variable

Y has density function

fY (y) =











0 y < 0

αe−αy 0 ≤ y

• Expected Value.

E [Y ] =
∫ ∞

0
yαe−αy dy

Need to evaluate the indefinite integral
∫

yαe−αy dy =

∫

−y d
(

e−αy
)

= −ye−αy −
∫

e−αy d(−y)

= −ye−αy +

∫

e−αy dy

= −ye−αy − e−αy

α
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Parameters of Random Variables

Exponential Random

Variable Continued

• Back to expected value:

E [Y ] =
∫ ∞

0
yαe−αy dy

= −(∞)e−α(∞) − e−α(∞)

α

−
(

−0e−α0 − e−α0

α

)

=
1

α

• Note the use of L’Hospital’s Rule in

evaluating

(∞)e−α(∞).
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Parameters of Random Variables

Exponential Random

Variable Concluded

• Variance. A similar calculation gives

Var [Y ] =
∫ ∞

0

(

y − 1

α

)2

αe−αy dy

=
1

α2

• You should be able to do this calculation.
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Parameters of Random Variables

Properties of Expectation

Theorem. Suppose X and Y are random

variables such that E [X] and E [Y ] are

defined.

1. For all real β, E [βX] = βE [X] .

2. E [X + Y ] = E [X] + E [Y ] .

3. If X and Y are independent, then

E [XY ] = E [X] E [Y ] .

For the proof, see Theorem 2.7.1.

Properties 1 and 2 together say that

expectation is linear.
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Parameters of Random Variables

Application of Linearity

Recall from Page 33 the two branch banks

that submitted X1 and X2 transactions daily.

pX1
(n) = pX2

(n) = 1/1000, where

1 ≤ n ≤ 1000.

pX1+X2
(n)

=



























0 n < 2 or n > 2000
n− 1

(1000)2
2 ≤ n ≤ 1001

2001 − n

(1000)2
1002 ≤ n ≤ 2000

E [X1] = 1001/2

E [X1 +X2] = ?
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Parameters of Random Variables

Another Application

Find a higher-level expression for variance

using linearity of expectation.

Var [X]

= E
[

(X − E [X])2
]

= E
[

X2 − 2XE [X] + E [X]2
]

= E
[

X2
]

− 2E [X] E [X] + E [X]2

= E
[

X2
]

− E [X]2

= E
[

X2
]

− µ2

This is often easier to apply than the

“defining” formula for variance.
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Discrete Random Variables

Discrete Random Variables

• Discrete Probability Distributions.

Random variable assumes only a

countable number of values.

• Distribution function of a R.V.

summarizes the underlying sample space

as far as the R.V. is concerned. Result is

to ignore the complexities of the sample

space.

• We consider only a few specific

distributions.
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Discrete Random Variables

Basic Discrete Random

Variables

• Discrete Uniform R.V. Assumes only a

finite number of values, each with the

same probability.

• Bernoulli R.V. There are only two values:

– Success (1) with probability p.

– Failure (0) with probability q = 1 − p.
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Discrete Random Variables

Other Discrete Random

Variables

• Binomial R.V. Based on a finite

sequence of independent Bernoulli trials.

Counts successes.

• Geometric R.V. Based on an infinite

sequence of independent Bernoulli trials.

Detects first success.

• Poisson R.V. Not Bernoulli based. Takes

on an infinite set of values.
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Discrete Random Variables

Binomial Random Variable

• Binomial R.V. X counts the number of

successes among n independent Bernoulli

trials. Parameterized by n and p.

• Assumes values 0,1,2, . . . , n.

• Probability Mass Function. For

0 ≤ k ≤ n,

Pr [X = k] = b (k;n, p)

=

(

n
k

)

pkqn−k
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Discrete Random Variables

Parameters of Binomial R.V.

• Sum of Bernoulli R.V.’s.

X = X1 +X2 + · · · +Xn, where

X1, X2, . . . , Xn are independent, identically

distributed Bernoulli R.V.’s.

• Expected Value.

E [X] =
n
∑

i=1

E [Xi]

= np

• Variance.

Var [X] = npq
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Discrete Random Variables

Shape of the Binomial R.V.

For 1 ≤ k ≤ n, consider the ratio rk of

consecutive probabilities:

rk =
b (k;n, p)

b (k − 1;n, p)

=

(

n
k

)

pkqn−k

(

n
k − 1

)

pk−1qn−k+1

=

n!

k!(n− k)!
n!

(k − 1)!(n− k+ 1)!

(

p

q

)

=

(

n− k+ 1

k

)

(

p

q

)
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Discrete Random Variables

Shape Continued

Consider the sequence r1, r2, . . . , rn:

rk =

(

n− k+ 1

k

)

(

p

q

)

r1 = n(p/q)

rn = (1/n)(p/q)

There are three cases:

Condition Shape of b (k;n, p)

n ≤ q/p
Max at k = 0; decreases

monotonically.

rt ≥ 1 > rt+1

Max at k = t; increases

monotonically to t, then

decreases monotonically.

n ≤ p/q
Max at k = n; increases

monotonically.
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Discrete Random Variables

Geometric R.V.

In an infinite sequence of Bernoulli trials, let

X be the number of trials before the first

success.

• X assumes values 0,1,2, . . ..

• Probability Mass Function.

Pr [X = k] = qkp
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Discrete Random Variables

Geometric R.V. Continued

• Expected Value.

E [X] =
q

p

• Variance.

Var [X] =
q

p2

• Memoryless, like an exponential R.V.
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Discrete Random Variables

Poisson R.V.

If X has a Poisson distribution with parameter

α, then its probability mass function is

Pr [X = k] = e−α
αk

k!
.

• X assumes values 0,1,2, . . ..
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Discrete Random Variables

Poisson R.V. Continued

• Expected Value.

E [X] = ψ′
X [0]

= αeθeα(e
θ−1)

θ=0

= α

• Variance.

E
[

X2
]

= ψ′′
X [0]

= α(1 + αeθ)eθ+α(eθ−1)

θ=0

= α(1 + α)

Var [X] = E
[

X2
]

− (E [X])2

= α

• Applications: later.
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Continuous Random Variables

Continuous Random

Variables

• Continuous Probability Distributions.

Random variable assumes an uncountable

number of values.

• For our purposes, computing the

probability that a continuous R.V. takes

on a range of values corresponds to

integrating the density function over

that range of values.

• Typically in computer science

applications, the value of a continuous

R.V. corresponds to time in the future,

with the current time being time 0.

• Less frequently, the value is spatial

(length, area, etc.).
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Continuous Random Variables

Continuous Random

Variables

• Continuous Uniform R.V. Assumes

values only in a bounded interval, with

constant density function for that interval.

• Exponential R.V. Exponentially

decreasing density function.
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Continuous Random Variables

Uniform Continuous Random

Variable
Y has a uniform continuous distribution over the
interval [a, b].

fY (y) =















1

b− a
a ≤ y ≤ b

0 otherwise

Expected Value.

E [Y ] =

∫ b

a

y

b− a
dy

=
b+ a

2

Variance.

Var [Y ] =

∫ b

a

(y − E [Y ])2

b− a
dy

=
(b− a)2

12
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Continuous Random Variables

Exponential R.V.

Y has density function

fY (y) =



















0 y < 0

αe−αy 0 ≤ y

Expected Value.

E [Y ] =
∫ ∞

0
yαe−αy dy

=
1

α

Variance.

Var [Y ] =
∫ ∞

0

(

y − 1

α

)2

αe−αy dy

=
1

α2

Memoryless.

Pr [Y ≤ t | R ≤ Y ] = FY (t−R).
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Continuous Random Variables

Modeling Constant Rate of

Point Mutations

• Use exponential distribution, since it is

memoryless.

• Parameter α is the rate at which

mutations occur.

• E [Y ] = 1/α makes sense.

• Once one mutation occurs, the process

starts all over again.

• In an interval of length β, the number of

mutations follows a Poisson distribution

with parameter β/α.
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Stochastic Processes

Stochastic Processes

• A stochastic process X = {X(t) : t ∈ T}
is a family of random variables indexed by

some set T . Often T is time.

• The set of all possible values of the X(t)

is the state space of X.

• If T is uncountable (e.g.,

T = R+ = {t : t ≥ 0}), then X is a

continuous parameter process.

• If T is countable (e.g., T = Z or

T = Z+ = {n : n ∈ Z and n ≥ 0}), then X

is a discrete parameter process.
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Stochastic Processes

Stochastic Processes from

Message Arrivals

Process Index Set State Space

I = {τn} {1,2,3, . . .} R+

Discrete Continuous

R = {λa,b} TR Z+

Continuous Discrete

M = {Mn} Z+ R+

Discrete Continuous

N = {N(t)} R+ Z+

Continuous Discrete

TR = {(a, b) : 0 ≤ a < b}
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Stochastic Processes

Counting Process

A stochastic process X = {X(t) : t ∈ R+} is a

counting process for a set of events

occurring in the time interval (0,∞) if

• X(0) = 0.

• X(t2) −X(t1) is the number of events

occurring in the interval (t1, t2].

As a consequence, we have

• X(t) assumes values in Z+.

• t1 < t2 implies that X(t1) ≤ X(t2).
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Stochastic Processes

A Counting Process

The message counting process

N = {N(t) : t ∈ R+} is a counting process.

We want to investigate the kinds of

properties N might (or should) have.

• Should N(t1) and N(t2), where t1 < t2, be

independent?

• What does it mean for messages to arrive

at a constant rate? Two possibilities:

1. Constantly spaced messages. E.g.,

message mn arrives precisely at time n

seconds.

2. The probability of one event in a small

interval is constant everywhere. Let’s

develop some terminology so we can

talk about this possibility.
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Stochastic Processes

Definitions

• The function f(h) is o(h) if

lim
h→0+

f(h)

h
= 0.

• N = {N(t) : t ∈ R+} has independent

increments if whenever (a1, b1] and

(a2, b2] are nonoverlapping intervals, then

N(b1) −N(a1) and N(b2) −N(a2) are

independent R.V.s.

• N = {N(t) : t ∈ R+} has stationary

increments if for all t1 ≥ 0, t2 ≥ 0, and

h ≥ 0, the random variables

N(t1 + h) −N(t1)

and

N(t2 + h) −N(t2)

have identical distribution functions.
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Stochastic Processes

Notes for the Definitions

Caution. The little-oh defined here is not the

little-oh of algorithm analysis. In particular,

algorithm analysis concentrates on h→ ∞.

A function that is o(h) should be thought of

as small in the upcoming definition. The

definition is a formal statement of that

intuitive notion.
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Stochastic Processes

Poisson Process

Definition 4.2.1. A counting process

N = {N(t) : t ∈ R+} is a Poisson process

with rate λ > 0 if these properties hold.

1. N has independent increments.

2. N has stationary increments.

3. The probability of one event occurring in

a small interval of length h is

approximately λh:

Pr [N(h) = 1] = λh+ o(h).

4. The probability of two or more events

occurring in a small interval of length h is

approximately 0:

Pr [N(h) ≥ 2] = o(h).
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Stochastic Processes

Poisson Process

Theorem 4.2.1. Let N = {N(t) : t ∈ R+} be

a Poisson process with rate λ > 0. Fix t > 0.

Let the random variable Y be the number of

events within an interval of length t. Then Y

has a Poisson distribution with parameter λt.

That is,

Pr [Y = k] = e−λt
(λt)k

k!

for k ∈ Z+.

In particular, the expected number of

events in the interval (0, t] is E [Y ] = λt,

exactly what one would expect of a con-

stant rate counting process.
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Stochastic Processes

Interarrival Times

Theorem 4.2.2. Let N = {N(t) : t ∈ R+} be

a Poisson process with rate λ > 0. Let τn be

the nth interarrival time, as before. Then the

τn’s are independent, identically distributed

exponential R.V.s with parameter λ.

PROOF. Since N has independent

increments, the τn’s are independent.

Since N has stationary increments, we may

calculate

Pr [τn > s] = Pr [N(s) = 0]

= e−λs.

Hence

Pr [τn ≤ s] = 1 − e−λs,

so τn is an exponential R.V. with parameter

λ.
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Stochastic Processes

The Converse

Theorem 4.2.3. Let N = {N(t) : t ∈ R+} be

a counting process such that the τn’s are

independent, identically distributed

exponential R.V.s with parameter λ. Then N

is a Poisson process with rate λ.

PROOF. Since the τn’s are memoryless, we

get independent increments and stationary

increments.

As before, let Mn be the time of the nth

event. By Theorem 3.2.6, Mn has a gamma

distribution with parameters n and λ. Hence

Pr [N(t) = n] = Pr [Mn ≤ t] − Pr [Mn+1 ≤ t]

=

∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx

−
∫ t

0

λ(λx)ne−λx

n!
dx
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Stochastic Processes

Proof Continued

Pr [N(t) = n] =
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx

−
∫ t

0

λ(λx)ne−λx

n!
dx

=
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx

−
∫ t

0

−(λx)n

n!
d
(

e−λx
)

=
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx

+
(λx)ne−λx

n!

t

0

−
∫ t

0

e−λx

n!
d ((λx)n)
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Stochastic Processes

Proof Concluded

Pr [N(t) = n]

=
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx+

(λx)ne−λx

n!

t

0

−
∫ t

0

e−λx

n!
d ((λx)n)

=
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx+

(λt)n

n!
e−λt

−
∫ t

0

λ(λx)n−1e−λx

(n− 1)!
dx

=
(λt)n

n!
e−λt

Hence N(t) has a Poisson distribution with

parameter λt. We conclude that N is a

Poisson process.
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Stochastic Processes

Constant Rate Arrival =

Poisson Process

We should remember a Poisson process as

the counting process that corresponds to the

arrival of messages (or customers) at a server

with a constant rate.

This is the most tractable assumption for

modeling message arrival.
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Birth and Death Process

Graphical Representation

Poisson Process. An infinite graph (actually

a path) with each state of the counting

process a node and the arcs labeled with the

arrival rate.

��
��

��
��

��
��

��
��

��
��

- - - - -0 1 2 3 4λ . . .λ λ λλ

More General Counting Process. Each arc

could have a different arrival rate.

��
��

��
��

��
��

��
��

��
��

- - - - -0 1 2 3 4 . . .λ0 λ1 λ2 λ3 λ4
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Birth and Death Process

Queuing

• A communication switch typically has a

queue to store incoming messages

(arrivals or births) until they can be
retransmitted (departures or deaths).

• There can be a rate of departure, just
as there is a rate of arrival.

• No longer a counting process, but a

slightly more general birth-and-death
process X = {X(t) : t ≥ 0}.

• Still a continuous parameter, discrete
state space, stochastic process.

• A birth takes the process from state n to
state n+ 1, while a death takes the

process from state n to state n− 1. A

death cannot occur in state 0.
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Birth and Death Process

Representation

Assume a birth occurs from state n to n+ 1

at the rate λn, while a death occurs from

state n to n− 1 at the rate µn. There are

now two transitions (arcs) out of every state

except 0. Get the state-transition rate

diagram.

��
��

��
��

��
��

��
��

��
��

- - - - -

� � � � �0 1 2 3 4 . . .
λ0 λ1 λ2 λ3 λ4

µ1 µ2 µ3 µ4 µ5
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Birth and Death Process

Interpretation

��
��

��
��

��
��

��
��

��
��

- - - - -

� � � � �0 1 2 3 4 . . .
λ0 λ1 λ2 λ3 λ4

µ1 µ2 µ3 µ4 µ5

• State n represents the accumulation of n

messages in the communications switch.

• Typically assume process starts in state 0.

• If there is any state n for which a birth in

state n is disallowed, then the process has

a finite number of states (at most n+ 1).

• Some deaths may be disallowed also.

Example, a Poisson process!

• Note the resemblance to a (finite)

automata or state machine.
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Birth and Death Process

Analysis of Birth and Death

Processes

Summary. We have a stochastic process

X = {X(t) : t ≥ 0} with state space Z+, birth

rates λn, n ≥ 0, and death rates µn, n ≥ 1.

Assume initially in state 0.

• Pr [X(t) = n] is the probability that at

time t the process is in state n. Under

some circumstances (e.g., a Poisson

process), the distribution of X(t) can be

analytically derived.

• Limiting Probabilities. For all n ∈ Z+,

define

pn = lim
t→∞

Pr [X(t) = n] ,

if the limit exists.
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Birth and Death Process

Stationary Process

If all the limits

pn = lim
t→∞

Pr [X(t) = n]

exist, then X is a stationary process and

reaches a steady state distribution given by

the pn’s (in the limit).

• If every pn = 0, then X moves off to an

“infinite state,” a disaster if X represents

the messages contained in a

communications switch!

• Otherwise,

∞
∑

n=0

pn = 1.

• How can we determine the pn?
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Birth and Death Process

Flow

"!
# 

"!
# 

"!
# -

�

-

�
n

λn−1 λn

µn µn+1

n− 1 n+ 1

• Flow In.

FLOWINn

=











pn−1λn−1 + pn+1µn+1 n > 0

pn+1µn+1 n = 0

• Flow Out.

FLOWOUTn

=











pn(λn + µn) n > 0

pnλn n = 0
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Birth and Death Process

Balance Equations

"!
# 

"!
# 

"!
# -

�

-

�
n

λn−1 λn

µn µn+1

n− 1 n+ 1

In the limit, the rate of flow (births and

deaths) into state n must equal the rate of

flow out.

• The balance equations are, for all n ≥ 0,

FLOWINn = FLOWOUTn.

• For n > 0, this is

pn−1λn−1 + pn+1µn+1 = pn(λn + µn)

• For n = 0, this is

p1µ1 = p0λ0
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Birth and Death Process

Example 4.3.2 (Paradigm)

"!
# 

"!
# -

�

λ

µ

10

1. Write down the balance equations.

p0λ = p1µ

p1µ = p0λ

2. Write down the normalizing equation.

p0 + p1 = 1.

3. Solve for p0 and p1.

p0 = µ/(λ+ µ)

p1 = λ/(λ+ µ)

4. Interpret result.
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Birth and Death Process

Notes for Example 4.3.2.

These four steps provide a general paradigm

for finding the stationary probabilities of a

birth-and-death process and interpreting its

limiting behavior.

For this particular example, the interpretation

is that the time spent in either state is

proportional to the arrival rate into that state.
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Birth and Death Process

Exercise

Consider this 3-state birth-and-death process.

"!
# 

"!
# 

"!
# -

�

-

�
1 20

2 2

11

• Use the paradigm to find p0, p1, and p2.

Consider this infinite-state birth-and-death

process.

��
��

��
��

��
��

��
��

��
��

- - - - -

� � � � �0 1 2 3 4 . . .
2 2 2 2 2

11111

• In consideration of your answer for the

process above, can you guess what the

limiting probabilities for this process are?
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Birth and Death Process

Final Birth-and-Death

Exercise

��
��

��
��

��
��

��
��

��
��

- - - - -

� � � � �0 1 2 3 4 . . .
2 2 2 2 2

55555

Balance Equations. For n > 0, we have

5pn+1 + 2pn−1 = 7pn

5p1 = 2p0

Normalizing Equation.

∞
∑

n=0

pn = 1
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Birth and Death Process

Solving. Use your hard-earned knowledge of

solving recurrences to solve for the pn. The

recurrence is

5pn+1 = 7pn − 2pn−1

for n > 0.

Interpretation. You can solve this kind of

problem all day! ©⌣
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Markov Chains

Markov Chains Lite

Start with a discrete parameter, discrete state

space, stochastic process

X = {Xn : n ∈ Z+, Xn ∈ Z+}.

Suppose X is homogeneous in time (time is

discrete). This means that, for all times

n1, n2 ∈ Z+, and all states i, j ∈ Z,

Pr [Xn1+1 = j|Xn1
= i] = Pr [Xn2+1 = j|Xn2

= i]

= Pi,j

where Pi,j is a constant independent of time.

Then we have a Markov chain with

stationary transition probabilities.
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Markov Chains

Transition Probability Matrix

P =





































P0,0 P0,1 P0,2 · · ·

P1,0 P1,1 P1,2 · · ·

P2,0 P2,1 P2,2 · · ·
... ... ... ...

Pi,0 Pi,1 Pi,2 · · ·
... ... ... ...





































EXAMPLE.

P =























0.15 0.40 0.45 0

0.50 0 0.50 0

0 0 0 1

0.80 0 0.20 0























Note that every row sums to 1.
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Markov Chains

Markov Chain Diagram

P =























0.15 0.40 0.45 0

0.50 0 0.50 0

0 0 0 1

0.80 0 0.20 0























Graph with states as nodes, arc from i to j

labeled Pi,j if nonzero.

0

1

2

3

0.50

0.5
0

1

0.80

0.45

0.4
0

0.2
0

0.
15
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Markov Chains

Important Properties

• Reachability. If there is a path in the

diagram from node i to node j, then j is

reachable from i.

• Irreducibility. If every node is reachable

from every other node, then the Markov

chain is irreducible.
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Markov Chains

Multiple Steps

The n-step transition probability from node i

to node j is

P
(n)
i,j = Pr [Xn = j|X0 = i] .

• 2-step transitions.

P
(2)
i,j =

∞
∑

k=0

Pi,kPk,j

This is the inner product of the ith row

and jth column of P . Said another way
[

P
(2)
i,j

]

= P2.

• n-step transitions. Generalize this

observation to get
[

P
(n)
i,j

]

= Pn.
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Markov Chains

Period

The period of state i is the greatest common

divisor of all integers n ≥ 1 such that

P
(n)
i,i > 0.

• Periodic state. Period is > 1.

0

1

2

3

Period of state 0

is ?

Period of state 1

is ?

• Aperiodic state. Period is 1.

1

2

3

0

Period of state 0

is ?

Period of state 1

is ?
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Markov Chains

Probability of Recurrence

The probability that the first recurrence of

state i occurs after n steps is

f (n)
i

= Pr [Xn = i,X1 6= i ∧ · · · ∧Xn−1 6= i | X0 = i] .

Accumulate these to get the probability of

ever returning to state i:

fi =
∞
∑

n=1

f
(n)
i .

• If fi < 1, then state i is transient.

• If fi = 1, then state i is recurrent.
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Markov Chains

Recurrent States

If state i is recurrent, that is,

∞
∑

n=1

f
(n)
i = 1,

then define the mean recurrence time of

state i to be

mi =
∞
∑

n=1

nf
(n)
i .

• If mi = ∞, then i is recurrent null.

• If mi <∞, then i is positive recurrent.
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Markov Chains

Stationary and Limiting

Probabilities

The vector π = (π0, π1, . . .), where each πi ≥ 0

and
∑∞
n=0 πn = 1, is a stationary probability

distribution for X if this matrix equation is

satisfied:

π = πP.

Example of a Markov chain without a

stationary probability distribution ?

The vector π = (π0, π1, . . .) is a limiting

probability distribution for X if for each i,

i ≥ 0,

πi = lim
n→∞Pr [Xn = i] .

Example of a Markov chain without a limiting

probability distribution ?
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Markov Chains

Theorem 4.4.4

Suppose X is an irreducible, aperiodic, time

homogeneous Markov chain.

• The limiting probabilities

πi = lim
n→∞Pr [Xn = i]

always exist and are independent of the

initial distribution.

• If all the states are not positive recurrent,

then all πi = 0 and no stationary

probability distribution exists.

• Ergodicity. Otherwise, π = (π0, π1, . . .) is

the stationary probability distribution, and

hence π is the unique solution to

∞
∑

i=0

πi = 1

π = πP.
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Markov Chains

Paradigm

0. Model your problem using a Markov

chain.

1. Write down the equations in Theorem

4.4.4.

2. Solve the equations for the πi’s.

3. Interpret the results.

On to an example!
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Markov Chains

2 1

0

1/2
1/4

3/4
1/4

1/4

1

1. Write down the equations.

π0 + π1 + π2 = 1

π0 =
1

4
π1 +

1

4
π2

π1 = 1 · π0 +
1

2
π1

π2 =
1

4
π1 +

3

4
π2

2. Solve the equations for the πi’s.

π0 = 1
5

π1 = 2
5

π2 = 2
5

3. Interpret the results. ?
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Markov Chains

Convergence of Markov

Chains

• Given a Markov chain

X = {Xn : n ∈ Z+, Xn ∈ Z+} with

transition probability matrix P , it may

have a stationary and limiting probability

distribution

π = (π0, π1, π2, . . .).

Then we know the following:

∞
∑

n=0

πn = 1 (2)

π = πP (3)

πi = lim
n→∞Pr [Xn = i] . (4)

• How rapid is the convergence?
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Markov Chains

Analyzing Convergence

Rates

• The probability of being in state i at time

n is

π
(n)
i = Pr [Xn = i] .

•

π(n) =

(

π
(n)
0 , π

(n)
1 , . . .

)

is the vector of state probabilities at time

n.

• The initial probability distribution is π(0).
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Markov Chains

Analyzing Convergence

Rates (Continued)

• The deviation in state i from its limiting

probability at time n is

δ
(n)
i = πi − π

(n)
i .

• The vector of deviations is

δ(n) =

(

δ
(n)
0 , δ

(n)
1 , . . .

)

.

• For all n ∈ Z+, we get the vector equation

π = π(n) + δ(n).

• Also,

∞
∑

i=0

δ
(n)
i = 0.
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Markov Chains

Analyzing Convergence

Rates (Continued)

• For all n ∈ Z+, we get the recurrence

π(n+1) = π(n)P.

• By linearity of matrix multiplication, it

follows that, for all n,

δ(n+1) = δ(n)P.

• Analyze the rate at which δ(n) → 0 to

determine how rapidly the Markov chain

“mixes.”

• Example next!
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Markov Chains

Convergence Example

�
�

-

�
�

�"!
# 

"!
# 

-

�0

1 − p0

p0
1 − p1

1
p1

•

P =











1 − p0 p0

p1 1 − p1











.

• As in the analysis of the similar

birth-and-death process, the paradigm

gives the limiting probabilities

π0 =
p1

p0 + p1

π1 =
p0

p0 + p1
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Markov Chains

Example Continued

• The recurrence gives

δ
(n+1)
0 = (1 − p0)δ

(n)
0 + p1δ

(n)
1

δ
(n+1)
1 = p0δ

(n)
0 + (1 − p1)δ

(n)
1

• Use δ
(n)
0 + δ

(n)
1 = 0 to get

δ
(n+1)
0 = (1 − p0)δ

(n)
0 − p1δ

(n)
0

= (1 − p0 − p1) δ
(n)
0

= (1 − p0 − p1)
n+1 δ

(0)
0

• Convergence is exponentially rapid.

• When fastest ? When slowest

?
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