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Questions for a Public Health
administrator

• Dynamics of epidemic
– How many infections?
– How long will the epidemic last?

• Detecting an outbreak
– Information from hospitals, pharmacies, media, etc.
– Sensors placed around the city

• Controlling an outbreak
– Quarantine people/Close down locations
– Vaccinate people
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Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem
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The first Network Approach to
Epidemiology

“Riddle of the Cholera Outbreak”
solved by Dr. John Snow

• Made an implicit network between
people and water pumps
• People who drank water from 
Broad St. pump died
• also proved that cholera spreads
through water
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Contact Graph
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Nodes: people
Properties: demographics, immunity

Edges: contacts between people
Properties: duration, nature of
                  contact
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Epidemic on network:
Communicating FSM Model
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Transition probabilities for
a node depend on neighbor’s
states
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The SIR Disease Model
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• Discrete SIR process
• Each node remains infected for
2 time steps
• Transmission probability on edge
(u,v) = p(u,v)
• Initially node 1 infected

t=0
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Sample run
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t=2

Probability =
(1-p(1,2))p(3,2)(1-p(3,4))
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transmission
No transmission
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Sample run
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t=3

Probability =
(1-p(2,4))(1-p(3,4))
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t=4

Probability =
(1-p(2,4))

All nodes are recovered/susceptible:
simulation stops

Susceptible
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Formalizing the output of a
simulation run
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Probability of this run,

PS[R] = p(1,3)p(3,2)(1-p(1,2))2(1-p(3,4))2(1-p(2,4))2

 Vt: set of nodes that got infected
at step t
 U: set of uninfected nodes
I: set of edges on which infection
spread (solid edge)
 T: duration of epidemic
 The information in one run of the
SIR process on a network is
captured by the tuple:

R = ( (V0, V1, …, VT, U), I)

I = { (1,3), (3,2)}
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Phase space for the SIR process
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Threshold phenomena

Abrupt jump 
in epidemic size
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Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem
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The Sensor Placement Problem
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Dominating set problem: choose
L’ ⊆ L s.t. N(L’) = P

(1-ε)-Dominating set problem: 
choose L’ ⊆ L s.t. |N(L’)|≥ (1- ε)|P|



Network Dynamics and Simulation Science Laboratory

Temporal Dominating Set
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The Temporal Dominating set problem: choose
L’ ⊆ L, and time interval [t1, t2] for each l ∈ L’
s.t. ∀ p ∈ P, ∃ l ∈ L’ s.t. I(p,l) ∩ [t1, t2] ≠ Ø

[4pm, 6pm]

[11am,2pm]

[6pm, 8pm]

I(p, l): interval during which p visits l
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Complexity of the Sensor
Placement problem

• NP complete to solve optimally in general
• ß-approximation algorithm A: if
       #locations chosen by algo A ≤ ß·OPT

– OPT: smallest #locations possible for the given instance
– Guarantee should be true for every instance (worst case approximation

guarantee)
– Algo runs in polynomial time

• No approximation better than c · log n possible in general
• Greedy algo gives O(log n) approximation
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Greedy Algorithm for Sensor
Placement

• Initialize
– S=Ø (locations chosen)
– C=Ø (people covered)

• Repeat till  C=P (all elements are covered)
– Choose location v that covers the largest number of uncovered people
– Add v to S
– Add all newly covered people to C
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Running time of Greedy algorithm

• Naive implementation: O(m|L|) time
• Improved implementation: O(m log |L|) time

– Using priority queues
– Main operations

• Find location v that covers the most number of uncovered people
• Update coverage of all other locations after v is added to S: for each p∈P

covered by v, reduce coverage of all v’ visited by p
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Priority Queues: Basic Operations

•  Store a set of elements, with key(v) for each v
•  Find the element with smallest key and remove it
•  Update the key of some element

•  Store as a list
– O(1) time to insert/delete element
– O(n) to find minimum

•  Store as a sorted array
– O(1) to find minimum
– O(log n) time to find any element
– O(n) to delete/insert

• Use priority queues to implement Greedy?
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Heaps

•  Combine benefits of both lists and sorted arrays
•  Stored in a balanced binary tree T
•  Heap order: for each element v at node i of T, the element w at i’s

parent satisfies key(w) ≤ key(v)
•  Assume N=maximum number of elements known in advance
•  Store nodes of T in array
•  node at position i has children in positions 2i and 2i+1
•  parent(i) = i/2
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Elements in a heap
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Inserting an element

Insert new element at position n+1 in array
Fix heap order by Heapify-up
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Heapify-up

Let v be the element in H at position i
Induction hypothesis: H is almost a heap with key of H[i] too small, i.e., there is a
value a ≥ key(v) s.t. increasing key(v) to a would make H a heap

Base case: i=1 true
Consider i>1. Let v=H[i], j=parent(i), w=H[j] 
After swapping v and w, either H is a heap or almost a heap with H[j] too small -
true because setting a value of H[j] to key(w) ≥ key(H[j]) would make H a heap

O(log n) steps to run Heapify-up
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Heapify-down
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Proof: Heapify-down

• Definition: H is almost a heap with the key of H[i] too big if there is
a value a ≤ key(H[i]) such that lowering the key of H[i] to a will
satisfy the heap property.

• Theorem: The Heapify-down leads to a valid heap.
• Proof: If element H[i] is a leaf, i.e., 2i>n, H is a heap.
• Induction Hypothesis: If H is almost a heap with the key of H[i] too

big, then Heapify-down(H,i) is almost a heap with the key of H[j] too
big, where H[j] is a child of H[i], if 2i<n.

• After swap: heap property may only be violated at position j.

• ⇒ Heapify-down leads to heap property in O(log n) steps
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Approximation guarantee of Greedy

• Let Greedy pick the locations v1, v2, …, vk (in this order)
• Let S(vi) be the set of people covered by vi alone (not covered by

locations v1, …, vi-1)
• For each p ∈ S(vi) choose f(p) = 1/|S(vi)|
• ∑p f(p) = k = cost of greedy
• For each location v in OPT

– ∑p in S(v) f(p) ≤ loge n

Theorem #sets chosen by Greedy ≤ (loge n) OPT
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Sensor Placement in practice

• FastGreedy: choose large locations in non-increasing order of
degrees whose sum of degrees is (1-ε’)|P|

• FastGreedy works well in practice
– 10% of the locations can dominate ~90% of people in Portland network
– Very close to Greedy
– Takes ~15 sec

• Temporal version hard to approximate within Ω(nε)
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Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4

Assume: highly infectious
disease
⇒ any node with a path
to A gets infected

choose S ⊆  P to vaccinate
so that  |S| ≤ B, and # nodes 
reachable from A in 
G[P\S] is minimized

Goal
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4 OPT

Sopt

choose S ⊆ P to vaccinate
so that  |S| ≤ B, and # nodes 
reachable from A in 
G[P\S] is minimized

Goal

Result Bicriteria approximation: Vaccinate
(1+ε)B nodes so that at most 
(1+1/ ε) OPT infected people1,2

1S. Eubank, V.S. Anil Kumar, M. Marathe, A. Srinivasan and N. Wang, AMS-DIMACS special volume, 2005
2A. Hyrapetyan, D. Kempe, M. Pal and Z. Svitkina, ESA 2005


