
Network Dynamics and Simulation Science Laboratory

Dept. of Computer Science and
Virginia Bioinformatics Institute

Virginia Tech

Anil Vullikanti and Madhav Marathe

Algorithmic Problems in Epidemiology

Network Dynamics and Simulation Science Laboratory

Questions for a Public Health
administrator

• Dynamics of epidemic
– How many infections?
– How long will the epidemic last?

• Detecting an outbreak
– Information from hospitals, pharmacies, media, etc.
– Sensors placed around the city

• Controlling an outbreak
– Quarantine people/Close down locations
– Vaccinate people

Network Dynamics and Simulation Science Laboratory

Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem

Network Dynamics and Simulation Science Laboratory

The first Network Approach to
Epidemiology

“Riddle of the Cholera Outbreak”
solved by Dr. John Snow

• Made an implicit network between
people and water pumps
• People who drank water from
Broad St. pump died
• also proved that cholera spreads
through water

Network Dynamics and Simulation Science Laboratory

Contact Graph

1

2 3

4

Nodes: people
Properties: demographics, immunity

Edges: contacts between people
Properties: duration, nature of
 contact

Network Dynamics and Simulation Science Laboratory

Epidemic on network:
Communicating FSM Model

S I R

S I R S I R

S I R

Transition probabilities for
a node depend on neighbor’s
states

Network Dynamics and Simulation Science Laboratory

The SIR Disease Model

1

2 3

4

• Discrete SIR process
• Each node remains infected for
2 time steps
• Transmission probability on edge
(u,v) = p(u,v)
• Initially node 1 infected

t=0

Network Dynamics and Simulation Science Laboratory

Sample run

1

2 3

4t=0

1

2 3

4t=1

transmissionno
transmission

Probability =
p(1,3)(1-p(1,2))

1

3

2

4

t=2

Probability =
(1-p(1,2))p(3,2)(1-p(3,4))

Susceptible

Infected

Recovered

transmission
No transmission

Network Dynamics and Simulation Science Laboratory

Sample run

1

3

2

4

t=2

Infected

Recovered

transmission
No transmission

1

3

2

4

t=3

Probability =
(1-p(2,4))(1-p(3,4))

1

3

2

4

t=4

Probability =
(1-p(2,4))

All nodes are recovered/susceptible:
simulation stops

Susceptible

Network Dynamics and Simulation Science Laboratory

Formalizing the output of a
simulation run

1

3

2

4

V0

V1

V2

U

Probability of this run,

PS[R] = p(1,3)p(3,2)(1-p(1,2))2(1-p(3,4))2(1-p(2,4))2

 Vt: set of nodes that got infected
at step t
 U: set of uninfected nodes
I: set of edges on which infection
spread (solid edge)
 T: duration of epidemic
 The information in one run of the
SIR process on a network is
captured by the tuple:

R = ((V0, V1, …, VT, U), I)

I = { (1,3), (3,2)}

Network Dynamics and Simulation Science Laboratory

Phase space for the SIR process

Network Dynamics and Simulation Science Laboratory

Threshold phenomena

Abrupt jump
in epidemic size

Network Dynamics and Simulation Science Laboratory

Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem

Network Dynamics and Simulation Science Laboratory

The Sensor Placement Problem

p1

p2

l1

l2

people

p3

locations

l3

Dominating set problem: choose
L’ ⊆ L s.t. N(L’) = P

(1-ε)-Dominating set problem:
choose L’ ⊆ L s.t. |N(L’)|≥ (1- ε)|P|

Network Dynamics and Simulation Science Laboratory

Temporal Dominating Set

p1

p2

l1

l2

people

p3

locations

l3

The Temporal Dominating set problem: choose
L’ ⊆ L, and time interval [t1, t2] for each l ∈ L’
s.t. ∀ p ∈ P, ∃ l ∈ L’ s.t. I(p,l) ∩ [t1, t2] ≠ Ø

[4pm, 6pm]

[11am,2pm]

[6pm, 8pm]

I(p, l): interval during which p visits l

Network Dynamics and Simulation Science Laboratory

Complexity of the Sensor
Placement problem

• NP complete to solve optimally in general
• ß-approximation algorithm A: if
 #locations chosen by algo A ≤ ß·OPT

– OPT: smallest #locations possible for the given instance
– Guarantee should be true for every instance (worst case approximation

guarantee)
– Algo runs in polynomial time

• No approximation better than c · log n possible in general
• Greedy algo gives O(log n) approximation

Network Dynamics and Simulation Science Laboratory

Greedy Algorithm for Sensor
Placement

• Initialize
– S=Ø (locations chosen)
– C=Ø (people covered)

• Repeat till C=P (all elements are covered)
– Choose location v that covers the largest number of uncovered people
– Add v to S
– Add all newly covered people to C

Network Dynamics and Simulation Science Laboratory

Running time of Greedy algorithm

• Naive implementation: O(m|L|) time
• Improved implementation: O(m log |L|) time

– Using priority queues
– Main operations

• Find location v that covers the most number of uncovered people
• Update coverage of all other locations after v is added to S: for each p∈P

covered by v, reduce coverage of all v’ visited by p

Network Dynamics and Simulation Science Laboratory

Priority Queues: Basic Operations

• Store a set of elements, with key(v) for each v
• Find the element with smallest key and remove it
• Update the key of some element

• Store as a list
– O(1) time to insert/delete element
– O(n) to find minimum

• Store as a sorted array
– O(1) to find minimum
– O(log n) time to find any element
– O(n) to delete/insert

• Use priority queues to implement Greedy?

Network Dynamics and Simulation Science Laboratory

Heaps

• Combine benefits of both lists and sorted arrays
• Stored in a balanced binary tree T
• Heap order: for each element v at node i of T, the element w at i’s

parent satisfies key(w) ≤ key(v)
• Assume N=maximum number of elements known in advance
• Store nodes of T in array
• node at position i has children in positions 2i and 2i+1
• parent(i) = i/2

Network Dynamics and Simulation Science Laboratory

Elements in a heap

Network Dynamics and Simulation Science Laboratory

Inserting an element

Insert new element at position n+1 in array
Fix heap order by Heapify-up

Network Dynamics and Simulation Science Laboratory

Heapify-up

Let v be the element in H at position i
Induction hypothesis: H is almost a heap with key of H[i] too small, i.e., there is a
value a ≥ key(v) s.t. increasing key(v) to a would make H a heap

Base case: i=1 true
Consider i>1. Let v=H[i], j=parent(i), w=H[j]
After swapping v and w, either H is a heap or almost a heap with H[j] too small -
true because setting a value of H[j] to key(w) ≥ key(H[j]) would make H a heap

O(log n) steps to run Heapify-up

Network Dynamics and Simulation Science Laboratory

Network Dynamics and Simulation Science Laboratory

Heapify-down

Network Dynamics and Simulation Science Laboratory

Proof: Heapify-down

• Definition: H is almost a heap with the key of H[i] too big if there is
a value a ≤ key(H[i]) such that lowering the key of H[i] to a will
satisfy the heap property.

• Theorem: The Heapify-down leads to a valid heap.
• Proof: If element H[i] is a leaf, i.e., 2i>n, H is a heap.
• Induction Hypothesis: If H is almost a heap with the key of H[i] too

big, then Heapify-down(H,i) is almost a heap with the key of H[j] too
big, where H[j] is a child of H[i], if 2i<n.

• After swap: heap property may only be violated at position j.

• ⇒ Heapify-down leads to heap property in O(log n) steps

Network Dynamics and Simulation Science Laboratory

Approximation guarantee of Greedy

• Let Greedy pick the locations v1, v2, …, vk (in this order)
• Let S(vi) be the set of people covered by vi alone (not covered by

locations v1, …, vi-1)
• For each p ∈ S(vi) choose f(p) = 1/|S(vi)|
• ∑p f(p) = k = cost of greedy
• For each location v in OPT

– ∑p in S(v) f(p) ≤ loge n

Theorem #sets chosen by Greedy ≤ (loge n) OPT

Network Dynamics and Simulation Science Laboratory

Sensor Placement in practice

• FastGreedy: choose large locations in non-increasing order of
degrees whose sum of degrees is (1-ε’)|P|

• FastGreedy works well in practice
– 10% of the locations can dominate ~90% of people in Portland network
– Very close to Greedy
– Takes ~15 sec

• Temporal version hard to approximate within Ω(nε)

Network Dynamics and Simulation Science Laboratory

Outline

• John Snow and cholera
• A combinatorial model for diseases
• A formulation for the sensor placement problem
• A formulation for the vaccination problem

Network Dynamics and Simulation Science Laboratory

Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given

Network Dynamics and Simulation Science Laboratory

Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4

Assume: highly infectious
disease
⇒ any node with a path
to A gets infected

choose S ⊆ P to vaccinate
so that |S| ≤ B, and # nodes
reachable from A in
G[P\S] is minimized

Goal

Network Dynamics and Simulation Science Laboratory

Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4 OPT

Sopt

choose S ⊆ P to vaccinate
so that |S| ≤ B, and # nodes
reachable from A in
G[P\S] is minimized

Goal

Result Bicriteria approximation: Vaccinate
(1+ε)B nodes so that at most
(1+1/ ε) OPT infected people1,2

1S. Eubank, V.S. Anil Kumar, M. Marathe, A. Srinivasan and N. Wang, AMS-DIMACS special volume, 2005
2A. Hyrapetyan, D. Kempe, M. Pal and Z. Svitkina, ESA 2005

