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Traditional Scientific Research (Cms €
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« A Common Pattern in Scientific Research

What will people usually do to study a problem?
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Newton’s Apple: A Story from Astrology -
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Newton’s Three Laws of Motion

}.\ _> _>
A\ bl § 1148
Tycho Brahe Johannes Kepler
_ Isaac Newton
20 years of observation Kepler’'s Three Laws
Law of Universal

on the orbit of Mars
Gravitation
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Computational Science and Engineering

« Data Mining vs. Modeling and Simulation
“ Computational biology has two distinct branches: knowledge discovery, or
data-mining, which extracts the hidden patterns from huge quantities of
experimental data, forming hypotheses as a result; and simulation-based
analysis, which tests hypotheses with in silico experiments, providing
predictions to be tested by in vitro and in vivo studies. “
---- H. Kitano, Computational systems biology, Nature, 420, 206-210, Nov.

14, 2002

Computational Biology

My understanding of computational biology
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Modeling the Cell ¥
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Mitochondrion

BN

Peroxisome

From a modeler’s
point of view
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Modeling from Physics Point of View
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 Different Modeling Methods
* Top down vs. Bottom up
* Behavior vs. Mechanism
* From Physics vs. from Chemistry

* Deterministic vs. Stochastic

SWITCH
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A Chemically Reacting System

&

S. €

&

* Ina Volume €2, attemperature 7’
 Different conformation or excitation levels are considered different

species if they behave differently

< [Promoter

e

RNA]

« M elemental reaction channels R,....,R,,

* Each Rjdescribes a single instantaneous physical event which
changes the population of at least one species. For example,

A—S,

or S, — something else,

or §;+S§; —something else.

Computational Science and Engineering

* Molecules of v chemical species S,,...,S,,

P

Promoter
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Ordinary Differential Equation O
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For each species, assign a state variable, which describes its
concentration or population.

RNAP
+  [Promoter . CP\romoter

i
Xl X2 X3

Basic Deterministic Assumption:

The state change is proportional to the state of the reactants
and time

AX, (1) = —kX,(£) X, (£)At

Xl(t) = _le (t)Xz (t)



The Process of Transcription (in gene

expression

1. Binding

2. Initiation
3. Elongation
4

. Termination

The energy transfer
is accomplished by
ATP hydrolysis. This
results in the phos-
phorylation of the
Poll Il complex and
the transformation
of ATP into ADP.

Once the ATP activates
the complex, the helicase
activities of two TFIIH sub-

units results in the separation
1 of the DNA strands.

Unwinding the DNA allows
mRNA elongation to begin.

@ Nonspecific binding of
polymerase holoenzyme and

l © Formation of a
P closed-promoter

l © Formation of an

open-promoter

© Initiation of mMRNA
¢ synthesis, almost
" always with a purine

BN Promoter [IR

© Eiongation of mMRNA
by about 8 more
nucleotides

Most initiations are

abortive, releasing
oligonucleotides that are

2 to 9 residues long © Release of o as polymerase

proceeds down the template

Initiation figure
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A Model for Prokaryotic Gene Expression o
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1. Transcription Initiation (the binding and initiation)

P+RNAP — P« RNAP k, =10°M"'s™
P * RNAP — P+RNAP k, =10s™"
P e RNAP — TrRNAP ky=1s"

2. Elongation (RBS is available before elongation terminates

TrRNAP — RBS + P + EIRNAP k&, =1s~

3. Translation Initiation

Ribosome +RBS — RibRBS ks =10"M"s"
RibRBS — Ribosome +RBS 4, =2.25s~"

RibRBS — EIRib +RBS k; =0.557"
RBS — decay k,=03s"

4. Elongation ,
EIRib —Protein ky =0.015s

Protein — decay ki, =642x107s""



Gene Regulation
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Activator
(a)

CAP Polymerase
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Simple Regulation in Biology — Circuits? =
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Yes! Circuits!

State node symbols

Arc symbols
(Transit node and edges)

putational Science and Engineering

Reduced notation symbols

Category-l reduced notation

Protein State transition —_—l
Known transition Degradation ( ) > ¢
omitted —_—A\—
Receptor receptor_name
Unknown transition  ccccccccccccces = Transcription |:'— .o oo -E
lgnoscggnnel ' Bidirectional transition —e————§
( ) Translation  J/ =  jeemmcmmecoe e
lon channel D Translocation e
(open)
Module
Truncated -
Trunca association e e i )
Gene name Dissociation _K: Category-ll reduced notation (viewer only)
i Activation/ index  ~_
RNA A inhibition/ ( } > @
Truncation modification
Anti-sense Node structure
RNA Promote
transition ? S\%Z'i(:ilézlm @ res_pos (® phosphorylated
lon @ ) name GO acetylated
lnhlbl.|- . ubiquitinated
Simple transition T L em?:y @ methylated
don't care
molecule . @ hydroxylated
Add reactant
Unknown - Complex
state
Add product node
o
(Dinding. etc)
) AND —_—
:omodm:ﬁr / > Promotor
-mer wi (&) and coding _Q_&' T e }— e }—
N stacked structure
goro_name
symbols o _ for gene
Active S Exon structure [exen 1 Hexon7]
protein protein_name L for RNA

Kitano H, Funahashi A, Matsuoka Y, et al., Using process diagrams for the graphical representation
of biological networks, NATURE BIOTECHNOLOGY 23 (8): 961-966 AUG 2005



Unfolded

Proteins

Folded
Proteins
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A Complex Model
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. rpoH gene
Regul ation of Trans cnpuon

Heat-Shock H fat
Response l

Degradation @ Translation
.- \A 32 @
Activity @ - c)' 5 5
l |
(s —hspl T T hsSp2= Jeee [ 1N Heat
l Transcription & Translation
DnaK
GroEL > Chaperones| <{mmmmm- i
GroES

HsIVU Proteases
FitsH
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Involved Subject p=

Computational Science and Engineering

Calculus, ODE (Mathematics)

Probability (Statistics )

Programming language (Computer Science)
Systems Biology

 Come on! Is this possible?
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 Modeling with ODEs



C3:E
Ordinary Differential Equation O
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For each species, assign a state variable, which describes its
concentration or population.

RNAP
+  [Promoter . CP\romoter

i
Xl X2 X3

Basic Deterministic Assumption:

The state change is proportional to the state of the reactants
and time

AX, (1) = —kX,(£) X, (£)At

Xl(t) = _le (t)Xz (t)
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Ordinary Differential Equations v
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Many scientific applications result in the following system of equations

 _

which is called ordinary differential equations (ODEs).

Example: Newton’s Motion Law F =mx
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Malthus Model Cf:?;—r&
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“I SAID that population, when
unchecked, increased in a geometrical
ratio, and subsistence for man in an
arithmetical ratio. “

---- Thomas Malthus

Thomas Malthus Malthus Model

Assumption: the reproduction rate is proportional to the size of

An Essay on the Principle of
the population

Population

An Essay on the Principle of Population, as it Affects the _P =kP k= growth rate per Cap]ta
Future Improvement of Society with Remarks on the t 7

Speculations of Mr. Godwin, M. Condorcet, and Other . Kt
Writers. Solution: P(t) = P(O)e

LONDON, PRINTED FOR J. JOHNSON, IN ST. PAUL'S CHURCH-YARD,
1798.

k>0: exponential growth, k< 0: exponential decay



Malthus Model

=
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The reproduction rate is proportional to the population

P(t+ At) = P(t) + kP(t)At

Solve it we have

P(1) = Be ™

The population in the
United States in year
1790 is 3.9x10°

The corresponding
population in year

1800is 53x]0°
With a data fitting, we
obtain:

P(t) =3 0« 106 80.0307(t—1790)

250

Malthus Model: the population of the United States
T T T T

200+

S 150+

population

50

e H—

ok
TR

0
1780

1820 1840 1860 1880 1900

year

1800

1920
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Logistic Population Model o oo
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* Developed by Belgian mathematician Pierre Verhulst (1838) in
1838

* The rate of population increase may be limited, i.e., it may
depend on population density

P(t+ At)=P(t)+ k(P(t))At

where B P(1)

k(P(1)) = ko(l )P(t)

m

The solution is

P P

})()ekO(t_tO)-l_(Pm _B)) B 1+(i_1)e—ko(t—to)
P

0

P(f) — })Oeko(f—fo)
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Logistic Population Model p=
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The solution of the Logistic model

P P

m

])Oeko(t—to)_l_(Pm _130) - l_l_(i_l)e_k()(t_t())

o

P(f) — IDOQko(f—to)

With a data fitting

Model and Data: the population of the United States

250 T T T T

P =197x10°, k, =0.03134 . /

200 ’

¢
—_—
3

population {(107)
*.

50

- ¥ ’*W*

0 1 1 1
1750 1800 1850 1900 1950
year

2000
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Model of two species (Competition) 2

Let the population of two species be x(f) and y(f) , and they compete
in the same environment. If there is no competition, the population of X

will satisfy
X

X(2) = rix(( - —
With the competition,

)

1
. X +
®(2) = rx (A - Tf‘y)
For another species, there is a similar equation

) . Y+ [x
y() =nry(@d N, )

The physical meaning of (¢ and ﬁ can be understood as:
the resource each X species consume

o = :
the resource each Y species consume

Thus we have

aff =1



State Dynamics Plot vs Phase Plot
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State Dynamics Plot: state vs time,

&

Phase Plot: the state space, use arrow to represent the tangent vector

The phase plot reveals the geometric property of a dynamic system

represented by a pair of ODEs.

100

80

rx(z)=o.1x(1-xlgy) e
()= 013(1- ) “
"

0

i
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State Dynamics Plot vs Phase Plot =,
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Example: from different initial value, the trajectory follow the direction of the
arrows and reaches to its equilibrium state

70 T T T
/_/_’_— .
A x'=0.1x[1-[x+y)100)
60l ] ¥ =01y (1-[x+y100)
T T 4 T ! 4 T y T ! T
SoF 1 ; : ; : : : : 3
/ i z : : : : : : : : i
// % 2 4 S : 3 2 . > :
40t
¥
30F /
/
/
20F
10 . . , .
20 40 60 80 100
60 T
///
55} /
501 y
/
a5t //
a0l / i i i I
/ 0 10 20 30 40 50 60 70 80 90 100
35} i Cursor position: {-5.9, 118} > 3
The backward orbit from (64, 3.1} - a possible eq. pt. near (-3.50-08, -4.90-29).
4 1 Ready.
= The forward oroit from (78, 3.4} --> a possible eg. pt. near (88, 12).
The backward orbit from (78, 3.4} --> a possible eq. pt. near (-5.20-07, 4.7e-28).
251 Ready.
20 L . . .
0 20 40 60 80 100
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State Dynamics Plot vs Phase Plot =,
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However, a slight change of parameters make a big
difference in phase plot and lead to a different conclusion

120 I I
80 rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
(. X+y
x(¢) =0.1x(1- > 60
(t) (1==5) |
< .
. X+ T, —
§(0)=0.1y(1== %)
) 20 rrrrrrrrrrrrrrrrrrrrr =
A A Sty St It R Shdba
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State Dynamics Plot vs Phase Plot

X+ y
100
X+ y
90

X(2) = 0.1x(1 —

)

y(@) =0.1y( —

)

120

100

80

100 T T T T T

90% R
4

80(" .

60

40t

20

70 .

L i L L
0 200 400 600 800 1000

120 ; ) ) ) b

0 20 40 60 80 100 120

L . L
0 200 400 600 800 1000



State Dynamics Plot vs Phase Plot

A direct analysis through the phase plot

~

X(8) = rx(1 = F)
oo — _Brx+y
ky(t) =nyd N, )

The sign of the derivatives are decided by two values

N, - (x+ap) and aN, - (x +ay)

If N, >aN, X species will win.

If N, <oaN, Y species will win.
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Model of two species (Predator and Prey) o oo

 Lotka-Volterra Model

 The simplest model of predator-prey interactions developed independently
by Lotka (1925) and Volterra (1926)

« Ancona’s observation on Shark’s population during world war .

40

160

140
120
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 100
Thousands gol

60
10}
| SN

A4

- /
[
' :

1845 1855 1865 1875 1885 1895 1005 1915 1925 1935
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Model of two species (Predator and Prey) =2

Assumption:

» The predator species is totally dependent on a single prey species as its only food supply,

* The prey species has an unlimited food supply, and there is no threat to the prey other than
the specific predator.

Let X represent the prey and Y represent the predator, without the predator, the Malthus model
can be applied

X =dX
However, because of the predator, r has to be modified
x=(a-by)x

For the predator, the situation is just the opposite.

y=(-c+dx)y

Thus we get the ODEs for this model
x=(a-by)x
y=(-c+dx)y



Phase Plot Analysis

x=(a-by)x
y=(-c+dx)y

There are two corresponding equilibrium points:
(0,0) or R

(0,0)

0
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Matlab Simulation Result '

Computational Science and Engineering

Based on example:

x=(01-02y)x
y=(-3+0.4x)y
14 : : . . 25
] -
5 8 \ _ 15}
4+ \J . 10k
0 ' : ' : i
00 25
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SIR Model (Kermak — McKendrick Model) oy

S: Susceptible
I: Infected
R: Recovered/Removed

dasS
T —-pS()1(1)

A _ BS(I(t) - yi(1)
dt
dR

T —vI(?)

S(t)+I(t)+R(t)= N = the total population
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SIR Model =

Computational Science and Engineering

From the original model, we have

dS

— = =BSI(®)
dl
= BS(OI(D) = yI(1) = [BS(1) = Y)()

Note that this type of equations is similar to what we’ve seen before.
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The Simplest Chemical Reaction R
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* Decaying Process

Croeny —— (D

This process can be modeled as
S—k S

which can be further formulated into reaction rate
equations (RREs)

dx

— = —kx
dt
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Simple Chemical Reaction '

Computational Science and Engineering

* [somerization

Unfolded
Protein

=

This process can be modeled as

Sl—k%Sz

which can be further formulated into RREs

dx, _ _kx,
dr
dx, _ kx,
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Simple Chemical Reaction ¥
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 Reversible Isomerization

— (D

This process can be modeled as
K

—_—
S —< S

—1

Unfolded
Protein

which can be further formulated into RREs

dx,
dr
dx,
dr

= kyx, — k_,x,
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Channel Gating Mechanisms < A oo
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AChR: Proposed gating mechanism
(Unwin, 1995)

ol o

V3
ACh

&1

ACh

e %5 d;’.';’ AT 4

Closed Open




Simple Chemical Reaction
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» Dimerization (Bi-molecular Reaction)

Promoter

Crar) +

e

This process can be modeled as

k
S, + S, >.S
which can be further formulated into RREs
d
d-tl = —kx,x,
d
;tz = —kx,x,
dxs _ kx,x,

dz

RNA]

P

Promoter
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Bi-molecular Reaction =
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&0
/e h : _
|'. @ |
@ . f|+efr.ﬁe
xx e ; e f;' E’H«: —_
e
P e .-u'—..._n_“e
-"p? ME“._ I'.II-I. p‘- _,'.. i --..".\... m..- ....Ilu
@ e @
& ] A\ @ Electron from hydrogen
g v @ Electron from carbon
-u..____ E'- -

Na + Cl = Na Cl

lonic bond

Covalent bond



Simple Chemical Reaction

» Reversible Dimerization

Crar) +

Computational Science and Engineering

Promoter

+—>

This process can be modeled as

which can be further formulated into RRE

dx

dr
dx ,

dr
dx 4

dr

S

—k,x,x, + k_,x4

—k,x,x, + k_,x,

k,x,x,

— Kk_, x5

RNA]

P

Promoter
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Chemically Reacting Network =
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X' =x(10-0.01y)
¥ =y(-10+0.01%

Lotka reactions:

9000} ..

A+ X —2—>2X

7000 2

X +Y—=—=2Y —_
Y Cs Z = S000|...

Lead to ODEs

2000

x=(A-c,y)x

of- b

. i i i i i ; i i i i |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
y — ‘ 3 + ‘ 2 x ‘; Cursor position:  {-1.07e+08, 9.50+03) X

The backward orbit from {1.40+03, 3.92+03) was stoppad by the user.
Ready.
The forward orbit from (2.7e+03, 5.7e+03) was stoppad by the user.

The backward orbit from (2.70+03, 5.7e+03) was stoppad by ths user.
Ready.

We can use the following values to simulate this system.



Brusselator

B+ X—2 sV +(C ¢, 4 =15000,

Xy —sa3x c-s0, TN

¢, = 0.00005,

X Cg D 4000
C4 = 5 3000
2000 |
Lead to ODEs
1000
.X': - CIA — Csz + %xzy — C4.X' 00 10I00 20‘00 3OI00 40I00 SOIOO 60IOO 70I00 8000
. 2
y=c,Bx-5x7y
4000
3500 - ¥

CIA = SOOO, 3000 |
¢,B = 50,

2000 -

¢, = 0.0001, o

1000 -

c, =9.

Y \\::;:‘; )
500} b | NN
i Y= RN
%0500 1000 1500 2000 2500 3000 3500 4000




S8

Different Dynamic Behavior
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X'=-()-y
y' =x-(y)
Lo b g . .
Sl . “LOOKS” ,
S  ASYMPTOTICALLY STABLE
Al . ; , ;
% e
1 ,.\\v.: ek S e A
N\ fﬁ \
1 ‘ : /
2 : 3 SR o i b A o Y Eex-(EHy -y
Zl’ 115 1l 0{5 (; 015 1l 15 Zl’ 54 :
i - LIMIT CYCLE
A=



Oregonator

A+ X——>Y

10000 T T T T
X+Y——B
9000
C+Y—>=2Y+Z
8000
2y —4—D
7000
— G 5
E+7 X —_—
5000
i 4000
X=-cAx —c,xy +ckz 3000
. 2 2000 |
y=cAx-c,xy+c,Cy—-c,y
1000
z=c,Cy—-cikz :
10000 -, 10000 -,
8000 - 8000 -
A
6000 - 6000 -
4000 - 4000 -
2000 - 2000 -
0.l

8000 8000
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Oregonator ¥
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A+ X —=—=Y 10000 . . . : ; ;
X+Y——RB 9000 - ]
C+Y—S-=2Y +Z7 80007 1
2Y cy D 7000 B
6000 | .
F+7Z——X
< 5000 1
4000 .
3000} :
¢ A=2,c,=0.1,c,C =104,c, =0.016,c.E =26 x| -
1000 | .
0 1000 2000 3000 4000 5000 6000 7000
x1
4000 T | T T T T
3500 F . 10000 ; . ; ; . ; :
3000 | . |
2500 F - i
< 2000} . |
(Q -
1500 | . i
1000 - . i
500 F . |
00 10 2000 3 4000 5000 5000 7000 00 560 10I00 15I00 20I00 25I00 30I00 35I00 4000

X2
x1
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Fast and Slow Scales =
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» Many practical chemically reacting systems show different
time scales in different reactions. The simplest example is
given by the following:

S @ — G

Where the first two reactions are much faster than the third.
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Stiffness in the Heat Shock Response (HSR) model =
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| DNAK]
) P —@-@DNAK]
/

@ The total “concentration’” of

03, Is 30-100 per cell

m But the “concentration” of
- free o3, is .01-.05 per cell




C.S.E
Formulate the Multiscale Difficulty in Simple Models ?:g’j&
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* The multiscale behavior can be modeled in the
following simple model:

S, +S, <—— 8§,
S, +S, =5,
or a simpler model
S, <—— S,
S, —= 5,
 Features

—  Fast and slow reactions
—  Fast reactions usually “less important” than slow ones
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MM Equation in Enzyme Kinetics v

Computational Science and Engineering

Consider the following enzyme-substrate system

E+S<——ES—FE+P

« Partial Equilibrium Assumption

* Quasi-Steady State Assumption

+ Total Quasi-Steady State Assumption
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Exercise =
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Exercise

1. Write down the ordinary differential equations
for the following chemical reactions:

S +8,—=—=8 +5
S, ——=
S,—=—=S8, + 8,

where & =001, k&, =k; =10.

2. Choose one of the following two exercises:
a. Simulate this ordinary differential equation
in Matlab with the initial condition
S, =5, =1000.. Plot the trajectory for these two
variables.
b. In Matlab, use pplane7 to study its dynamic
behavior. Will this system oscillate, or tend

to a limit point?




