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Summary

• General Introduction

• Modeling: from Simple Structures to
Complex Systems

• Modeling with ODEs
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Traditional Scientific Research

• A Common Pattern in Scientific Research

Experiment Data Mining

Modeling

What will people usually do to study a problem?
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Newton’s Apple: A Story from Astrology

Tycho Brahe

20 years of observation
on the orbit of Mars

Johannes Kepler

Kepler’s Three Laws
Isaac Newton

Law of Universal
Gravitation

Newton’s Three Laws of Motion

Calculus
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Computational Biology

• Data Mining vs. Modeling and Simulation
“ Computational biology has two distinct branches: knowledge discovery, or
data-mining, which extracts the hidden patterns from huge quantities of
experimental data, forming hypotheses as a result; and simulation-based
analysis, which tests hypotheses with in silico experiments, providing
predictions to be tested by in vitro and in vivo studies. “

---- H. Kitano, Computational systems biology, Nature, 420, 206-210, Nov.
14, 2002

• My understanding of computational biology

Biological Experiment Data Mining

ModelingSimulation
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Modeling the Cell

A nice picture of
Cell

From a modeler’s
point of view
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Modeling from Physics Point of View

Chemotaxis

• Different Modeling Methods
• Top down vs. Bottom up

• Behavior vs. Mechanism

• From Physics vs. from Chemistry

• Deterministic vs. Stochastic
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Summary

• General Introduction

• Modeling: from Simple Structures to
Complex Systems

• Modeling with ODEs
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A Chemically Reacting System
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• Molecules of         chemical species
• In a Volume        , at temperature
• Different conformation or excitation levels are considered different
species if they behave differently

•        elemental reaction channels
• Each        describes a single instantaneous physical event which
changes the population of at least one species. For example,

RNAP Promoter+ RNAP
Promoter
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Ordinary Differential Equation

For each species, assign a state variable, which describes its
concentration or population.

RNAP Promoter+ RNAP
Promoter

1
X

2
X

3
X

Basic Deterministic Assumption:
The state change is proportional to the state of the reactants

and time

ttXtkXtX !"=! )()()( 211

)()()( 21

'

1 tXtkXtX !=



Computational Science and Engineering

The Process of Transcription (in gene
expression)

1. Binding

2. Initiation

3. Elongation

4. Termination

Initiation figure
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A Model for Prokaryotic Gene Expression

1. Transcription Initiation (the binding and initiation)

2. Elongation (RBS is available before elongation terminates

3. Translation Initiation

4. Elongation

RNAPP RNAPP +!•

RNAPPRNAPP •!+

RNAPTr RNAPP !•

ElRNAPPRBSTrRNAP ++!

RibRBSRBS Ribosome !+

RBS RibosomeRibRBS +!

RBS ElRibRibRBS +!

decayRBS!

Protein ElRib!

decayProtein!
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Gene Regulation

• Activator
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Simple Regulation in Biology – Circuits?

RNAp
A

OB promoterOA
g2

OR
B

RNAp
BA

OB promoterOA
g1

AND
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Yes! Circuits!

Kitano H, Funahashi A, Matsuoka Y, et al., Using process diagrams for the graphical representation 
of biological networks, NATURE BIOTECHNOLOGY 23 (8): 961-966 AUG 2005 
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Temp
environ

Temp
cell

Folded
Proteins

Unfolded
Proteins Aggregates

Loss of Protein
Function

CellDeath
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A Complex Model

Khammash et al.
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Involved Subject

• Calculus, ODE (Mathematics)
• Probability (Statistics )
• Programming language (Computer Science)
• Systems Biology

• Come on! Is this possible?
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Summary

• General Introduction

• Modeling: from Simple Structures to
Complex Systems

• Modeling with ODEs
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Ordinary Differential Equation

For each species, assign a state variable, which describes its
concentration or population.

RNAP Promoter+ RNAP
Promoter

1
X

2
X

3
X

Basic Deterministic Assumption:
The state change is proportional to the state of the reactants

and time
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Ordinary Differential Equations

Many scientific applications result in the following system of equations

 which is called ordinary differential equations (ODEs).

! 

F = m˙ ̇ x 

! 

dy

dx
= f (x,y)

Example: Newton’s Motion Law
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Malthus Model

“I SAID that population, when
unchecked, increased in a geometrical
ratio, and subsistence for man in an
arithmetical ratio. “

---- Thomas Malthus
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Malthus Model
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The reproduction rate is proportional to the population

Solve it we have

The population in the
United States in year
1790 is                      .

The corresponding
population in year
1800 is                      .

With a data fitting, we
obtain:
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Logistic Population Model

• Developed by Belgian mathematician Pierre Verhulst (1838) in
1838
• The rate of population increase may be limited, i.e., it may
depend on population density
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The solution is
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Logistic Population Model
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With a data fitting
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Model of two species (Competition)

Let the population of two species be           and          , and they compete
in the same environment. If there is no competition, the population of X
will satisfy

With the competition,

For another species, there is a similar equation

The physical meaning of         and           can be understood as:

Thus we have
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State Dynamics Plot vs Phase Plot

State Dynamics Plot:  state vs time,

Phase Plot: the state space, use arrow to represent the tangent vector

    The phase plot reveals the geometric property of a dynamic system
represented by a pair of ODEs.
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State Dynamics Plot vs Phase Plot

Example: from different initial value, the trajectory follow the direction of the
arrows and reaches to its equilibrium state
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State Dynamics Plot vs Phase Plot
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However, a slight change of parameters make a big
difference in phase plot and lead to a different conclusion
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State Dynamics Plot vs Phase Plot
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If                    , X species will win.

The sign of the derivatives are decided by two values

                            and

State Dynamics Plot vs Phase Plot
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Model of two species (Predator and Prey)

• Lotka-Volterra Model
• The simplest model of predator-prey interactions developed independently

by Lotka (1925) and Volterra (1926)
• Ancona’s observation on Shark’s population during world war I.
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Model of two species (Predator and Prey)

Assumption:

• The predator species is totally dependent on a single prey species as its only food supply,
• The prey species has an unlimited food supply, and there is no threat to the prey other than
the specific predator.

Let X represent the prey and Y represent  the predator, without the predator, the Malthus model
can be applied

However, because of the predator, r has to be modified

For the predator, the situation is just the opposite.

Thus we get the ODEs for this model
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There are two corresponding equilibrium points:

                                            or

Phase Plot Analysis
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Matlab Simulation Result
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SIR Model (Kermak – McKendrick Model)

S: Susceptible
I:   Infected
R: Recovered/Removed

! 

dS

dt
= "#S(t)I(t)

dI

dt
= #S(t)I(t) " $I(t)

dR

dt
= "$I(t)

! 

S(t)+I(t)+R(t)= N = the total population
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SIR Model

From the original model, we have

Note that this type of equations is similar to what we’ve seen before.

! 

dS

dt
= "#S(t)I(t)

dI

dt
= #S(t)I(t) " $I(t) = [#S(t) " $]I(t)
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• Decaying Process

This process can be modeled as

which can be further formulated into reaction rate
equations (RREs)

The Simplest Chemical Reaction
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• Isomerization

This process can be modeled as

which can be further formulated into RREs

Simple Chemical Reaction
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dx
1

dt
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• Reversible Isomerization

This process can be modeled as

which can be further formulated into RREs

Simple Chemical Reaction
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Channel Gating Mechanisms

AChR: Proposed gating mechanism  
(Unwin, 1995)

OpenClosed

Office 2004
Test Drive

User:
One proposal is that there
is a kink in the alpha
helices of the pore-lining
part of the channel. In the
closed state, the kink
sticks out to keep ions
from passing through the
channel. After ACh binds,
the subunits rotate so that
the kinks are no longer
pointed towards the center
of the pore.
Keep in mind, though,
that this is a cartoon. The
detailed structural info
needed to support or
denounce this model isn’t
available yet.
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• Dimerization (Bi-molecular Reaction)

This process can be modeled as

which can be further formulated into RREs

Simple Chemical Reaction
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Bi-molecular Reaction

Na + Cl = Na Cl

Ionic bond
Covalent bond
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• Reversible Dimerization

This process can be modeled as

which can be further formulated into RRE

Simple Chemical Reaction
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Chemically Reacting Network

Lotka reactions:
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Brusselator
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Different Dynamic Behavior
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Oregonator
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Oregonator
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• Many practical chemically reacting systems show different
time scales in different reactions. The simplest example is
given by the following:

Where the first two reactions are much faster than the third.

Fast and Slow Scales

! 

S
1

k
1"

k
#1

$ % % S
2

k
2% " % S

3

Open Close Activated



Computational Science and Engineering

Stiffness in the Heat Shock Response (HSR) model

The total “concentration” of
σ32 is 30-100 per cell

But the “concentration” of
free σ32 is .01-.05 per cell

σ DNAKσ

RNAP

RNAP

σ
DnaK FtsH

DNAK
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Formulate the Multiscale Difficulty in Simple Models

• The multiscale behavior can be modeled in the
following simple model:

or a simpler model

• Features
– Fast and slow reactions
– Fast reactions usually “less important” than slow ones
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MM Equation in Enzyme Kinetics

Consider the following enzyme-substrate system

• Partial Equilibrium Assumption

• Quasi-Steady State Assumption

• Total Quasi-Steady State Assumption

! 

E + S"# ES# E + P
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Exercise


