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cl Cro

If cI wins, P and P, are repressed and the cell enters lysogeny

If Cro wins, Py, is repressed and the cells enters the lytic cycle
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A close up on the right promoter- operator region
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cI represses P, - shuts off cro

cI activates Py, - expression of cI
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A Chemically Reacting System

e Molecules of N chemical species S,.....S, .

- In a volume 2, at temperature 7 .

- Different conformations or excitation levels are considered different
species if they behave differently.

e M “elemental” reaction channels R,.....R,, .
-each R; describes a single instantaneous physical event, which
changes the population of at least one species. Thus, R; is either
D —S,,
or
S; — something else,

or
S; +S, — something else .
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Question: How does this system evolve in time?

The traditional answer, for spatially homogeneous systems:
“According to the reaction rate equation (RRE).”
e A set of coupled, first-order ODEs.
® Derived using ad hoc, phenomenological reasoning.
e Implies the system evolves continuously and deterministically.
e Empirically accurate for large systems.

e Often not adequate for small systems.

The question deserves a more carefully considered answer.
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Molecular Dxnamics
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Molecular Dynamics (MD)

e The most exact way of describing the system’s evolution.

e Tracks the position and velocity of every molecule in the system.

e Simulates every collision, non-reactive as well as reactive.

e Shows changes in species populations and their spatial distributions.

® But . ..it’s unfeasibly slow for nearly all realistic systems.
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Some Facts about Cell (got from Mark Paul)

Characteristic Length Scales

The radius of a single cell,

Rcell ~ 5ﬂm

The radius of a water molecule,

Rwater ~ O3nm
The volume of a single cell,
1
Veeu ® §pL

If a cell only contained water, there would be,

Nuater ~ 4 % 10" molecules

Computational Science and Engineering

Characteristic Time Scales

Mean time for cell division,

tce” ~ 100min

At room temperature the equipartition of energy yields the mean
velocity of a molecule to be,

1
ngT = Emv2
Using this, the mean time between collisions is,

te < 1ps

The number of collisions to occur per cell cycle is then,

N~ 3x 10"

Molecular dynamics is out!
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A great simplification occurs if successive reactive collisions tend
to be separated in time by very many non-reactive collisions.

® The overall effect of the non-reactive collisions is to randomize the
positions of the molecules (and also maintain thermal equilibrium).

® The non-reactive collisions merely serve to keep the system well-
stirred or spatially homogeneous for the reactive collisions.

e Can describe the state of the system by X(#) = ( X,(£),..., Xy ()},

X ,(t) = the number of S, molecules at time 7.
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But this well-stirred simplification, which . . .

e jgnores the non-reactive collisions,

e rruncates the definition of the system’s state,
... comes at a price:

X(7) must be viewed as a stochastic process.

> In fact, the system was never deterministic to begin with!
Even if molecules moved according to classical mechanics . . .
- monomolecular reactions always involve QM.
- bimolecular reactions require collisions, whose extreme
sensitivity to initial conditions renders them essentially random.
- bimolecular reactions usually involve QM too.

> But stochastic processes can be handled.
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For well-stirred systems, cach R; is completely characterized by:
® apropensity function a,;(x): Given the system in state X,
a;(x)dt = the probability that one R, event will occur in the next dr .
- The existence and form of a;(X) follow from kinetic theory.

- a;(x) is roughly equal to, but is nor derived from, the RRE “rate”.

A

;; = the change in the

® a state change vector v, = (Vl jrres VN ) I %
number of §; molecules caused by one R; event.
- R; induces X > XxX+wv ;. {VI. i} = the “‘stoichiometric matrix.”

a, (X) = ¢, x x5, v, =(+1,—-10,....0)

S, +S, ==25, = X (x, — 1)

s a,(X) = c, 5 v, =(—1L+10,...,0)
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MOLECULE 2

r2

Vo, dt)(rr3 v :
{(( 12 !)2( 12))Xexp(_Ej/kBT)}xx1x2 =[%exp(—Ej/kBT)Jx1xz dr

-

N~

Probability that a randomly chosen S, -S, Cj

pair will react according to R; in next dt.
A A
= (cj xlxz)dt = a;(x)dt

aj(x)
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 Difference

— Propensity function describes the probability while reaction rate
describes the changing rate.

— Propensity functions are defined based on population of species while
the reaction rates are defined based on the concentration of species

» Connection
— For simple system, they have similar format.
For reactionlike 4 — B

Reaction rate: k[A]

Propensity function CxA
— Forreactionlike 4+ B — C

Reaction rate k[A] [B]

Propensity function ~ CX ,X g andwehave c=k/V

andwe have C = k
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Two exact, rigorously derivable consequences. ..

» 1. The chemical master equation (CME):

oP(x,11X,,1,
ot

M
) _ >l a;(x—v )HP(x—v ;. 11X,.1) —a;(X) P(x.11x,.1,) |.

J=l
e Gives P(x,tlx,.t,) = Prob{X(¢) =x, given X(z,) =x,} for r>1,.
® The CME follows from the probability statement

M
P(x,t+drlx,. 1) = P(x,rlxo,ro)x{l—Z((zj(x)(!r)}

J=1
M
+ZP(X—I}J-, X, to)x(aj (x—v, )dr).
J=1

e But it’s practically always intractable (analytically and numerically).
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> 2. The stochastic simulation algorithm (SSA):

e A procedure for constructing sample paths or realizations of X(t).

e Approach: Generate the time to the next reaction and the index of
that reaction.

e Theoretical justification: With p(z, jIx,7) defined by
p(T, jIx,t)dt 2 prob, given X(7)=x, that the next reaction will
occur 1n [t+7,t+7+d7T), and will be an Rj,
can prove that
M
p(z. jIx.1) = a;(x) exp(—a,(x)T), where a,(x)= zaj,(x) .
j=l

This implies that the time 7 to the next reaction event is an
exponential random variable with mean l/ a,(x), and the index j of

that reaction is an integer random variable with prob «a;(x) / ay(X) .
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The “Direct’” Version of the SSA

M

1. With the system in state x at time 7, evaluate «,(X) 2 Za /.f(x) .
j=l

2. Draw two unit-interval uniform random numbers # and r,, and

compute 7 and j according to

1 1
® 7= In| — |,
a, (X) (]]

J
® j = the smallest integer satisfying Zaj»(x) > 15 dy(X) .
J=l

3. Replace 7<-r+7 and x<x+v;.

4. Record (x,7). Return to Step 1, or else end the simulation.

(Inverse Generation Method)
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* A different but equivalent simulation method for SSA
» Generate a firing time for each reaction channel

1 1
T, = In ,
a;(x) (rj]

* Find the minimum of all the firing time and throw off all the others

W= the index satisfying

T, =minzT,,

* In theory this method is equivalent to the DM
» The biggest concern is the computational cost
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* Derived by Gibson and Bruck 2000

« Keep the randomly generated firing time if the
corresponding propensity function is not changed ( Use a
dependent graph (DG) to achieve this goal )

« Use absolute time instead of relative time

1 1 ! +
To = o — i
e () S\ r

 Reuse the unapplied uniform random number
Ta S (aa,old/af&,new)(Ta _ t) + 7.

« Use a priority tree (heap array) to conduct the search
* Only need to generate one uniform random number each
step

 The computational cost to maintain the data structure can
be hug!
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* Analyze the time profile of DM and NRM. Conclude that the
data structure maintaining cost is very high for most
problems.

« Sort the reaction channel so that more frequent firing
reaction channels have smaller index. (Run a few pre-
simulation to collect info for the problem. )

* If necessary, use the dependent graph (DG) to avoid
recalculating propensity functions for reaction channels
that are not affected by the last reaction.

« Efficient for multiscale problem
« Among all test problems we tried, ODM is faster than NRM.
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* The pro-simulation procedure is troublesome for an automatic
code.

« The index should be changed dynamically during the simulation

« Bubble sorting technique
If a reaction just fired, move its index one step up. After a
while, the reaction index will be automatically well-sorted.

* Less (but almost the same) efficient than ODM but much easier
to code and maintain.
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The SSA ...

e [s exact.
e [s equivalent to (but 1s not derived from) the CME.
® Does not entail approximating “df” by “ At ™.

e Is procedurally simple, even when the CME is intractable.

® Remains too slow for most practical problems: Simulating every
reaction event, one at a time, 1s just too much work if any reactant
1s present in very large numbers.



A Model for Prokaryotic Gene Expression ¥
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1. Transcription Initiation (the binding and initiation)

P+RNAP — P  RNAP k, =10°M"s™'
P e RNAP — P+RNAP k, =10s™"
P« RNAP — TrRNAP ky=1s~"

2. Elongation (RBS is available before elongation terminates

TrRNAP — RBS + P+ EIRNAP  k, =1s"

3. Translation Initiation

Ribosome +RBS — RibRBS ks =10"M"s"
RibRBS — Ribosome +RBS k¢ =2.25s~

RibRBS — EIRib +RBS k, =0.5s7"
RBS — decay k,=03s"

4. Elongation |
EIRib —Protein ky =0.015s

Protein — decay ki, =642x107s""



Simulation Results
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« Reactions:
B +2X «=3X

€2
3
B, «e= X

Caq

*  Propensity functions:

@, (x) = - Nyx(x =1,

a,(x) = %x(x —D(x —2),

a3(x) = C3N29

a,(x) =c,x.

 Bistable distribution
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Histogram plot of the state

in Schlogl model
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Single Simulation Results
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Trajectories of SSA simulation for Schlogl Model
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Stochastic Modeling
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Lotka reactions:
A+ X ——>2X
X +Y —= s2Y7

Y — =27
Lead to ODEs
x=(cA-c,y)x
y=(-c;+c,x)y

The stochastic simulation generates interestin

c,A =10,
c, = 0.01,
c; =10

Computational Science and Engineering
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A C X 8000
B+ X —© Y+C CIA = 5000, E

2X +Y—5s3Y B=50,  j

) ¢, =0.00005. |
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Break the Assumption
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Spatially Inhomogeneous Systems

e Spatial homogeneity does not require that all equal-size subvolumes of
L2 contain the same number of molecules!

® The CME and SSA require only that the center of a randomly chosen
S. molecule be found with equal probability at any point inside £2.

e A system consisting of only one molecule can be “well-stirred™.

> But the well-stirred assumption can’t always be made.

In that case, we must do something different; however, the traditional
reaction-diffusion equation (RDE) is not always the answer:

e The RDE (like the RRE) 18 continuous and deterministic.

e [t assumes that each d£2 contains a spatially homogeneous mixture of
infinitely many molecules.

e Not the case in most cellular systems, where spatial inhomogeneity
arises not from slow mixing but rather from compartmentalization
caused by highly heterogeneous structures within the cell.



