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* Molecules of N~ chemical species S,.,....S,

* |n a Volume Q, at temperature A
 Different conformation or excitation levels are considered different
species if they behave differently

RNAP
=<4 |Promoter| =———p
Promoter

« M elemental reaction channels R,,...,R,,

* Each Rjdescribes a single instantaneous physical event which
changes the population of at least one species. For example,

A—S,,
or S, — something else,

or §;+S§; —something else.



Ordinary Differential Equation
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For each species, assign a state variable, which describes its
concentration or population.

+

X,

Promoter

|

X,

—

Basic Deterministic Assumption:
The state change is proportional to the state of the reactants

and time

AX,(2) = —kX, () X, (1) At

Xl(t) = _le(t)Xz (t)

RNAP

|

Promoter

Xy
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Many scientific applications result in the following system of
equations

dx
- = (t,X)
dt /
Example: Newton’s Motion Law F =mx

which is called ordinary differential equations (ODESs).

Two types:
* Initial value problem (IVP)
* Boundary value problem (BVP)
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There are a few types of ODEs for which we are able to obtain
analytic solution and analyze their properties.

Equation with separable variables

y'=f(x)gly) = f%=ff(x)dx+€

— example

y'=Ay

Total differential equations
P(x,y)+ Q(x,y)y'=0

— example

y'=Ay



Existence
— Continuous function

Uniqueness /
— Lipschitz condition

|f @)= f@2| =Ly -4

Equilibrium State
Stability
— Example: linear system y'=Ay

— Lyapunov function /
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 Multistep Methods
— Euler method
— Adams method
— BDF method

 Runge-Kutta Methods
— Explicit RK
— Implicit RK
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- DASSL (BDF method)

- CVODE (BDF method)

- RADAUS5 (RK method)

« MATLAB functions



Simple Chemical Reaction ¥
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« Degradation

Croen ) —— (D

This process can be modeled as
S—*k -

which can be further formulated into reaction rate
equations (RREs)

dx = —kx
dt
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* [somerization

This process can be modeled as

Unfolded
Protein

Sl$52

which can be further formulated into RREs

dx, — e,
dr
dx, _ fex,



Simple Chemical Reaction
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 Reversible Isomerization

-

This process can be modeled as
K

—_—
S < S

—1

Unfolded
Protein

which can be further formulated into RREs

dx,
dr
dx,
dr

= k,x, — k_,x,



Channel Gating

Closed

Mechanisms

T

3
By

o

(Unwin, 1995)

ACh
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AChR: Proposed gating mechanism

Open

ACh
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Simple Chemical Reaction
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CRNaP D +

Promoter
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« Dimerization (Bi-molecular Reaction)

—

This process can be modeled as

Kk
S, + .S, > S,
which can be further formulated into RREs

.

c;Ctl = —kx,x,

.

;tz = —kx,x,

dXs _ kx,x,

dzr

RNAP

Promoter
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P i, .
@ @
Qe &5
- "'——e- "'"\ -
S e —_e.\e
y 5 Vi Y e O
0. [ . -
*k ¢ ,,.-f e %\ . /i e @ Electron from hydrogen
e g, @ Electron from carbon
St

Na + Cl = Na Cl

lonic bond

Covalent bond
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 Reversible Dimerization

+ OMIOLE Promoter

This process can be modeled as

<y
S, + S5 S5

-
A_4

which can be further formulated into RRE

dx

dtl = —k,x,x, + k_,x54
dx

dt2 = —Kk,x,x, + k_,x,4
dx

= Kk, x,x, — Kk ,Xx
dl_ 1 1 2 1 3
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Example of a Simple System
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Each icon represents a chemical species. Each arrow represents
a chemical reaction that occurs at a certain rate.

For each species. we can write a rate equation. for example:

d[Cyclin]/dt = synthesis — degradation — binding + dissociation
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1. Synthesis

X(7) = [cyclin]
dX
721(1, X(O) =X0

X()=X,+kt

Estimate &, from the “red” data:

} 7 [

Interphase arrested
) ! Felix et al. (1990)
Cyclin e Nature 346:379, Fig. 1
(nM) Vs

.l ._ Metaphase released
Tang et al. (1993)

20 40 60
Time (min)




Example of a Simple System
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2. Degradation

dX
—=-k,X. X(0)=X
7 X . X (0) 0
X (t)= Xge ™

1 _
X (t,) = ?Xo = Xge Mt =

-—

' A
2=e, or I, =

ky Kk,

_In2 0.7

Estimate k2 from the “blue” and *““‘green” data above.
How can it be that cvclin has different half-lives in

different phases of the cell cycle?
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Example of a Simple System

3. Dimerization

X(7) = [cyclin], C(7) = [Cdc2]., M(7) = [dimer],

DL = K CX () = by (Cy = M)(X, = M), M(0) =0
C,X,(1-e™ ")
M (t) = . where o=k (C, - X,)

C,—X,e ™

Estimate &, from the data below. given that C, = 100 nM.

20 ) o (=]
o

Kumagai & Dunphy (1993)
Mol Biol Cell 6:199 Fiz. 3B
Dimers
(M)

5 10 15
Time (min)



(C,‘ Si E
Example of a Simple System v

Computational Science and Engineering

4. Synthesis and Degradation

X ki -kX. X(0)=0.
dt )

X ()= :‘ (_l — e ™ )

Note:as r—> o, X () —> :l (stable steady state)

-~

From your previous estimates of k, and k,. estimate the steady state
concentrations of cyclin in interphase and late anaphase (end of mitosis).

Phase ke, I, X,

SS

Interphase

Anaphase
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Malthus Model
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Thomas Malthus

An Essay on the Principle of
Population

An Essay on the Principle of Population, as it Affects the
Future Improvement of Society with Remarks on the
Speculations of Mr. Godwin, M. Condorcet, and Other
Writers.

LONDON, PRINTED FOR J. JOHNSON, IN ST. PAUL'S CHURCH-YARD,

1798.

Computational Science and Engineering

“l SAID that population, when
unchecked, increased in a geometrical
ratio, and subsistence for man in an
arithmetical ratio.

---- Thomas Malthus

Malthus Model:

Assumption: the reproduction rate is proportional to the size of
the population

dP
e kP, k= growth rate per capita
Solution: P(t) = P(0)e"

k> 0: exponential growth, £ <0: exponential decay



Malthus Model
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The reproduction rate is proportional to the population

P(t + At) = P(t) + kP(£)At

Solve it we have

P(1) = B

The population in the
United States in year
1790 is 3.9x10°

The corresponding
population in year
1800 is 513x10°

With a data fitting, we
obtain:

P(t) =3.9x 106 £0-0307(1-1790)

Malthus Model: the population of the United States
T T T T

250
200 F
<5 150} o
= :
S
g 100t -
* -
o
. -
P
50 o
Wiy
_.;«"%/
i
b HTT
0 *"_'*__*._‘Jf“ 1 1 1 1
1780 1800 1820 1840 1860 1880 1900

year

1920
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Logistic Population Model ¥

Computational Science and Engineering

* Developed by Belgian mathematician Pierre Verhulst (1838) in
1838

* The rate of population increase may be limited, i.e., it may
depend on population density

P(t + At) = P(1) + k(P(t))At

where P(t)

k(P(2)) = ko(l )P(t)

m

The solution is

P P

E)eko(t—to)+(Pm -P) - 1+(i_1)e—ko(t—t0)
P

0

P(t) = E)eko(f-fo)
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The solution of the Logistic model

P, _ P
R)eko(t—to)_l_(Pm_})O) 1+(i

0

m

P(t) = Poeko(f—fo)

_ 1)€_k0 (t—20)

With a data fitting

Model and Data: the population of the United States

250 T T T T
»
6
P =197x10 k,=0.03134 * /
m ’ 0
200} ? =
2 /
: /
Vi
£
oy % LA
“5 150 # .
& 100 &y .
O % +
* "/
.',4*"7*
O ‘*’7'?f4*'* 1 1 1
1750 1800 1850 1900 1950 2000

year
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Let the population of two species be x(f) and )(f) , and they compete
in the same environment. If there is no competition, the population of X

will satisfy N

x(2) = rx(Hd ———)

With the competition,

1
5 X +
®(2) = rx()A - Tf‘“")
For another species, there is a similar equation

] _ oy + [Bx
y() =nry@d N, )

The physical meaning of (¢ and /3 can be understood as:
the resource each X species consume

O = .
the resource each Y species consume

Thus we have

af =1



State Dynamics Plot vs Phase Plot
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State Dynamics Plot: state vs time,
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Phase Plot: the state space, use arrow to represent the tangent vector

The phase plot reveals the geometric property of a dynamic system
represented by a pair of ODEs.

(1) = 0.1x(1 -

y(@) =0.1y(1 -

120
100
80

X + y)
100 > 90
X+ y) 40

100

20
0
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State Dynamics Plot vs Phase Plot
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Example: from different initial value, the trajectory follow the direction of the
arrows and reaches to its equilibrium state

70

25+

20
0

L
20

L
40

L
60

I
80

100

x'=0.1x[1-(x+y)100)
y'=01y(1-[x+y)100)

1 i i 1

10 20 30 40 50
Cursor position: (5.9, 118} X

The backward orol from (64, 3.1) —> a possile eq. pl. near (3.58-08, 4.99-23).

Ready.
The forward orbit from (78, 3.4) --> a possible eq. pt. near (88, 12).
mm«ummu)»-qu near (-5.20-07, 4.7e-26).




State Dynamics Plot vs Phase Plot
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However, a slight change of parameters make a big
difference in phase plot and lead to a different conclusion

[ . X+y
x(¢)=0.1x(1 - > 60

(?) ( 100)
<'(l‘)—01 (1_X+y) 40
Ly Ay 90
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State Dynamics Plot vs Phase Plot
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X+ y
100
X+ y
90

X(2) = 0.1x(1 —

)

y(@) =0.1y( — )
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A direct analysis through the phase plot

£(0) = rx(1 = T
1.0 _Px+y
\y(t) =ryd N, )

The sign of the derivatives are decided by two values

N -(x+ay) and  aN,-(x+a)

If N, > aN, , X species will win.

If N, <aV, Y species will win.
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« Lotka-Volterra Model

 The simplest model of predator-prey interactions developed independently
by Lotka (1925) and Volterra (1926)

« Ancona’s observation on Shark’s population during world war I.

40

160

140

120
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 100

Thousands 80

60
40
20

1845 1855 1865 1875 1885 1805 1905 1915 1925 1935
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Assumption:

* The predator species is totally dependent on a single prey species as its only food supply,

* The prey species has an unlimited food supply, and there is no threat to the prey other than
the specific predator.

Let X represent the prey and Y represent the predator, without the predator, the Malthus model
can be applied

X =d4dX
However, because of the predator, r has to be modified
x=(a-by)x
For the predator, the situation is just the opposite.

y=(-c+dx)y

Thus we get the ODEs for this model
x=(a-by)x
y=(-c+dx)y



Phase Plot Analysis

x=(a-by)x
y=(-c+dx)y

There are two corresponding equilibrium points:
C a
(0,0) or 72

(0,0)

|0
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Based on example: F=(1-027)x
y=(-3+0.4x)y

14 : 25

121 4
20+

10

8
= 15+
X

6

=
4r il 10 F
2r il
1I0 2I0 3IO
t

1
0 40 50

25
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The solution of the LV predator-prey model is

X =

_a
Y=

<

o

where :
a : the natural reproduction rate for the prey
b : the killing rate because of the predator

c: the natural death rate for the predator
d : the reproduction rate because of the prey
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When fishing is introduced in the model, their effect will be
increase the death rate of the predator and decrease the
reproduction rate for the prey. Thus

c—>c+e, a—>a-e

(0,0)
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S: Susceptible
I: Infected
R: Recovered/Removed

das
T —-pS()1(1)

dl

— = pS()I(t) — yI(?)
dt

dR
— = —v[(t
dt V(1)

S(t+I1(t)+R(1)= N = the total population
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From the original model, we have

dsS

—— = —BSMID)
dl
— = BSWI@®) - yI(D) = [BS(D) = Y1(D)

Note that this type of equations is similar to what we’ve seen before.



