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Summary 

•  General Introduction for ODEs 

•  Modeling with ODEs 
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A Chemically Reacting System 
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•  Molecules of         chemical species  
•  In a Volume        , at temperature  
•  Different conformation or excitation levels are considered different 
species if they behave differently 

•         elemental reaction channels  
•  Each        describes a single instantaneous physical event which 
changes the population of at least one species. For example,  

RNAP Promoter + RNAP 
Promoter 
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Ordinary Differential Equation 

For each species, assign a state variable, which describes its 
concentration or population.  

RNAP Promoter + RNAP 
Promoter 

1X 2X 3X
Basic Deterministic Assumption:  

 The state change is proportional to the state of the reactants 
and time 
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Ordinary Differential Equations 

Many scientific applications result in the following system of 
equations  

 which is called ordinary differential equations (ODEs).  

Two types:  
•  Initial value problem (IVP) 
•  Boundary value problem (BVP) 

€ 

F = m˙ ̇ x 
€ 

dx
dt

= f (t,x)

Example: Newton’s Motion Law 
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Analytic Solution 

There are a few types of ODEs for which we are able to obtain 
analytic solution and analyze their properties.  

•  Equation with separable variables 

–  example 

•  Total differential equations 

–  example 

€ 

y'= f (x)g(y)

€ 

dy
g(y)

= f (x)dx + C∫∫

€ 

⇒

€ 

y'= λy

€ 

P(x,y) +Q(x,y)y '= 0

€ 

y'= λy
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When we cannot find analytic solution 

•  Existence 
–  Continuous function  

•  Uniqueness 

–  Lipschitz condition 

•  Equilibrium State 
•  Stability 

–  Example: linear system 
– Lyapunov function 

€ 

f (t,y) − f (t,z) ≤ L y − z

€ 

y'= Ay
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Numerical Solution 

•  Multistep Methods 
–  Euler method 
–  Adams method 
–  BDF method 

•  Runge-Kutta Methods 
–  Explicit RK 
–  Implicit RK 
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Softwares for Numerical Solution 

•  DASSL (BDF method) 

•  CVODE (BDF method) 

•  RADAU5 (RK method) 

•  MATLAB functions  
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•  Degradation 

This process can be modeled as 

which can be further formulated into reaction rate 
equations (RREs) 

Simple Chemical Reaction 

€ 

dx
dt

= −kx

€ 

S k⎯ → ⎯ ∅

Protein 
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•  Isomerization 

This process can be modeled as 

which can be further formulated into RREs  

Simple Chemical Reaction 

€ 

dx1
dt

= −kx1

dx 2
dt

= kx1

€ 

S1
k⎯ → ⎯ S2

Unfolded 
Protein 

Folded 
Protein 
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•  Reversible Isomerization 

This process can be modeled as 

which can be further formulated into RREs  

Simple Chemical Reaction 

€ 

dx1
dt

= −k1x1 + k−1x2

dx 2
dt

= k1x1 − k−1x2

€ 

S1
k1→
k−1

← ⎯ ⎯ S2

Unfolded 
Protein 

Folded 
Protein 
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Channel Gating Mechanisms  

AChR: Proposed gating mechanism  "
(Unwin, 1995)"

Open	

Closed	



Office 2004 
Test Drive 

One proposal is that there 
is a kink in the alpha 
helices of the pore-lining 
part of the channel. In the 
closed state, the kink 
sticks out to keep ions 
from passing through the 
channel. After ACh binds, 
the subunits rotate so that 
the kinks are no longer 
pointed towards the center 
of the pore. 	


Keep in mind, though, that 
this is a cartoon. The 
detailed structural info 
needed to support or 
denounce this model isn’t 
available yet.	
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•  Dimerization (Bi-molecular Reaction) 

This process can be modeled as 

which can be further formulated into RREs  

Simple Chemical Reaction 

€ 

dx1
dt

= −kx1x2

dx 2
dt

= −kx1x2

dx 3
dt

= kx1x2

€ 

S1 + S2
k⎯ → ⎯ S3

RNAP Promoter + RNAP 
Promoter 
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Bi-molecular Reaction 

Na + Cl = Na Cl 

Ionic bond 
Covalent bond 
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•  Reversible Dimerization 

This process can be modeled as 

which can be further formulated into RRE  

Simple Chemical Reaction 

€ 

dx1
dt

= −k1x1x2 + k−1x3

dx 2
dt

= −k1x1x2 + k−1x3

dx 3
dt

= k1x1x2 − k−1x3

€ 

S1 + S2
k1⎯ → ⎯ 

k−1
← ⎯ ⎯ 

S3

RNAP Promoter + RNAP 
Promoter 
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Example of a Simple System 
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Example of a Simple System 
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Example of a Simple System 
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Example of a Simple System 
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Example of a Simple System 
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Summary 

•  General Introduction for ODEs 

•  Modeling with ODEs 
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Malthus Model 

“I SAID that population, when 
unchecked, increased in a geometrical 
ratio, and subsistence for man in an 
arithmetical ratio. “ 

 ---- Thomas Malthus 
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Malthus Model 
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The reproduction rate is proportional to the population 

Solve it we have 

The population in the 
United States in year 
1790 is                      . 

The corresponding  
population in year 
1800 is                      . 

With a data fitting, we 
obtain:  

)(
0

0)( ttkePtP −=

6109.3 ×

6103.5 ×

)1790(0307.06109.3)( −×= tetP
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Logistic Population Model 

•  Developed by Belgian mathematician Pierre Verhulst (1838) in 
1838 
•  The rate of population increase may be limited, i.e., it may 
depend on population density 
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The solution is 
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Logistic Population Model 
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The solution of the Logistic model 

With a data fitting 

03134.0            ,10197 0
6 =×= kPm
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Model of two species (Competition) 

Let the population of two species be           and          , and they compete 
in the same environment. If there is no competition, the population of X 
will satisfy  

With the competition,  

For another species, there is a similar equation 

The physical meaning of         and           can be understood as:  

Thus we have  
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State Dynamics Plot vs Phase Plot 

State Dynamics Plot:  state vs time,  

Phase Plot: the state space, use arrow to represent the tangent vector 

    The phase plot reveals the geometric property of a dynamic system 
represented by a pair of ODEs.  
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State Dynamics Plot vs Phase Plot 

Example: from different initial value, the trajectory follow the direction of the 
arrows and reaches to its equilibrium state 
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State Dynamics Plot vs Phase Plot 
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However, a slight change of parameters make a big 
difference in phase plot and lead to a different conclusion 
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State Dynamics Plot vs Phase Plot 
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If                    , X species will win.   

The sign of the derivatives are decided by two values 

                            and  

State Dynamics Plot vs Phase Plot 
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A direct analysis through the phase plot 

21 NN α>

If                    , Y species will win.   21 NN α<
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Model of two species (Predator and Prey) 

•  Lotka-Volterra Model 
•  The simplest model of predator-prey interactions developed independently 

by Lotka (1925) and Volterra (1926) 
•  Ancona’s observation on Shark’s population during world war I.  
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Model of two species (Predator and Prey) 

Assumption:  

•  The predator species is totally dependent on a single prey species as its only food supply,  
•  The prey species has an unlimited food supply, and there is no threat to the prey other than 
the specific predator.  

Let X represent the prey and Y represent  the predator, without the predator, the Malthus model 
can be applied  

However, because of the predator, r has to be modified 

For the predator, the situation is just the opposite.  

Thus we get the ODEs for this model 
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There are two corresponding equilibrium points: 

                                            or  

Phase Plot Analysis  
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Matlab Simulation Result 
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Effect of Parameters 

b
ay

d
cx ==      ,

prey for the rate onreproducti natural    the:a
predator  theof because rate killing    the:b

The solution of the LV predator-prey model is  

where 

predator for the rate death natural    the:c
prey  theof because rate onreproducti    the:d

Question: Why the shark ratio increases during world war I?  
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Parameter Analysis  

)0,0(

b
ay

d
cx == **      ,

When fishing is introduced in the model, their effect will be 
increase the death rate of the predator and decrease the 
reproduction rate for the prey. Thus 

eaaecc −→+→      ,
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SIR Model (Kermak – McKendrick Model) 

S: Susceptible 
I:   Infected 
R: Recovered/Removed 

€ 

dS
dt

= −βS(t)I(t)

dI
dt

= βS(t)I(t) − γI(t)

dR
dt

= −γI(t)

€ 

S(t)+I(t)+R(t)= N = the total population
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SIR Model 

From the original model, we have  

Note that this type of equations is similar to what we’ve seen before.  

€ 

dS
dt

= −βS(t)I(t)

dI
dt

= βS(t)I(t) − γI(t) = [βS(t) − γ]I(t)


