
Nest Thermostat Software Bug
By Josh Ho, Justin Nelson, Lance Aguilar, Pierre Sarabamoun, Michael Pigeon



Article Breakdown

● Google Nest – makes smart home products
● Dec 2015: Pushed a buggy update to 

internet-connected thermostats, causing 
malfunction
○ “It didn’t show up for about 2 weeks”

● Thermostat owners left freezing in their homes 🥶
● Nest published a nine-point plan for users to fix the 

issue themselves
○ “Try turning it off and on again”

● New update has been pushed to address issue



Are Bugs In Production Avoidable

Are bugs like this in “finished” and distributed programs 
avoidable? If not, if bugs leaking through is considered too 
dangerous in certain contexts should software improvements in 
that area be avoided all together?

Bugs like this are almost always possible, but the chance of bugs 
can be reduced significantly by extensive testing over an extended 
period and by designing methods to detect and correct when 
something goes bad, such as when the temperature is very low.

Software improvements in dangerous areas shouldn’t be avoided 
since they still improve safety. However, there should be fallbacks 
for when the software fails.



Are Bugs In Production Avoidable (continued)

Many companies have very strict review and testing 
processes already, did NEST test less than the industry 
standard or did they just get unlucky that a bug slips 
through?

In the article, the NEST team said that it took 2 weeks for the 
bug to appear. Since there are a lot of possible major 
problems when a thermostat stops working right, they 
should have been testing their updates for an extended 
period of time in a lot of different environments. They 
probably should have been testing processes for a longer 
period of time before release.



How to address this problem?

What should companies do to address this potential for critical bugs?

- The company mentioned the bug did not appear for 2 weeks, 
suggesting that the software may not have been tested 
thoroughly enough

- Better analysis of uses cases, as well as more specific 
software test cases could have been developed

- Software updates can be tested on a smaller scale (small user 
pool) before having the updates pushed to a larger consumer 
base

- Errors in a small sample size helps developers focus on 
problems quicker and more efficiently (errors in a larger sample 
size can be hard to keep track of)



Should they put in more rigid and strict testing 
protocols? What would that mean for the 
companies? 

- Rigid and strict testing protocols should be in place
- The software error remained undetected because the 

software was not tested thoroughly enough
- A strict and specific testing protocol would help detect 

bugs that may not be readily apparent, or errors that can be 
undetected by normal tests

- Rigid testing protocols would require companies to spend 
more time in their testing phases, which could delay the 
release of updates

- Companies would need to assess for themselves which 
tests are worth update delays



Is it worth trying to address it?

Increasing the rigidity of testing protocol would require 
more man power and take more time, can companies 
afford all that time and money?

Assuming it is avoidable, these instances are very rare, 
so is it worth slowing down the production of software 
companies to try to bring that chance down as much 
as possible or is it not viable from a business point of 
view?



Do you think these 
bugs are avoidable? If 
not, is this software 
worth it at all?


