
Why Google Stores
Billions of Lines of Code
in a Single Repository

Colin MacMaster, Alex
Claycomb, Alex Namkung, Inti
Espejo, Michael Koch, Nandha

Chokkan

Google Develops Code at a Massive Scale

Their repository includes:

● 86 TB of data
● 2 Billion lines of code
● 9 million unique source files
● shared access by 25000 developers
● 16,000 manual changes a day
● 24,000 changes by automated systems
● Serves 500,000 read queries per second

Commits Per Week (2010-2015)

Piper

● Google’s main method for storing their
source code in one large repository

● Distributed across 10 Google data centers
○ Before Piper, Google used one Perforce

instance
● Logs read and write access, and supports

file-level access control for security
● Works very similar to Git:

○ Developer creates a local copy of files (like a
local clone of a repository in git)

○ Updates to Piper can be pulled and merged
into local work (like a fetch and merge in git)

○ Files can be committed and pushed to the
repository after code review

Simplified Piper Workflow

Clients in the Cloud (CitC)

● Main way of developing for applications stored on
Piper

● All files stored in a cloud-based linux-only
environment

● All Piper files can be browsed, but only changes are
stored in CitC

● Workspaces are available across machines
● Features that ease development:

○ Auto-commit for code review
○ Simple edits to Piper files directly from code browser

Ultimately, Piper and CitC allow Google and other large
software companies to keep their source code in monolithic
repositories.

Trunk Based Development

● Piper and Citc were heavily influenced by Trunk Based Development
● Changed to the most recent version of code or the “trunk” are made in a single, serial

ordering
● Avoids the painful process of merging together large branches of code
● Because of this development process, branches are rarely used at Google and are only

used for releases and snapshots
● Flag flips are used instead to easily switch off new implementations that may have

problems
● Trunk based development also allows Google to easily test and experiment with

performance while the code is being written

Google Workflow

● Due to the nature of trunk-based development on such a
massive scale, several practices and support systems are
required.

Technical
● Automated testing infrastructure initiates a rebuild of all

affected dependencies on almost every change
○ Changes that result in breakage are automatically undone

● Google’s “Presubmit” infrastructure can identify breakage
without committing to the repository

○ Presubmit analyses are run for all changes
○ Code owners can create their own custom analyses to target

certain directories

Example presubmit report at Google

Google Workflow

Cultural
● Code quality is maintained by reviewing all code that is committed to the repository

○ CitC and Google formatting rules make it easy for managers to quickly review employee
commits

○ “Tricorder” system also provides automated analytics on coding quality

Cleanup
● Teams of Google members frequently

undertake wide reaching code cleanup
changes to maintain the health of the
codebase

○ “Rosie” system splits a large patch into
smaller pieces which can be reviewed,
tested, and submitted independently

Rosie commits per month

Advantages

● Unified versioning
○ “Single source of truth”

● Large amount of code available for sharing and use
○ Easy to include code across directories

● Atomic changes
○ Major changes impacting 100s, 1000s of files

can be done in a single operation
● Fluid team boundaries

○ All code stays in same repo, regardless of
project ownership

● Easy to understand how individual source files fit
in

The “diamond dependency” problem - avoided by Google’s
monolithic codebase
Source: https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-
repository/fulltext

Costs and Trade-Offs

● Tooling Investment
○ Requires tools for development and

execution
● Increased Codebase Complexity

○ Difficulties with code discovery and
unnecessary dependencies
■ Binary bloating, build breakages

● Code Health Investment
○ Support refactorings, codebase-wide

clean-ups, and modernization efforts
Clipper: Dependency Refactoring Tool

Alternatives

Google has been considering a move from their proprietary software to Git as their main
version control system

Some teams (Android, Chrome) are already using it to supplement their use of the main
repository

The main drawback for google is that Git functions much better with many small repositories
rather than one large one, so they would have to split their repository

Google is experimenting with Mercurial a system that is much more similar to Git than their
proprietary system

Question

Do you think this strategy is beneficial for the giant that Google has become,
or is it more useful for engineers to be able to manage their projects on a
smaller scale?

