EXpressions

Pasha Ranakusuma, Thejus Unnivelan, Omar
Elgeoushy, Mohammed Alsabty, Sam Lightfoot

Overview

Lambda Expressions : Methods/Functions :: Object Oriented
Programming : Objects

Expression vs Statement

Helps make code that is more dynamic in their capabilities

public static void main(String[]| args
ArraylList<Integer> numbers = new ArraylList<Integer
numbers.add(5
numbers.add(9
numbers.add(8
numbers.add(1
numbers.forEach((n) -> { System.out.println(n

\ History and Development

® In 1936 lambda calculus was developed by the american
mathematician Alonzo Church
Lambda was used as a model to solve the

Entscheidungsproblem (first order logic)
Functional programming languages, like Miranda, ML etcetera,
are based on the lambda calculus.

The Case For and Against Lambda Expressions

Used in place of to represent

Pros: Cons:

Concise e Counters Java conventions
Loaded quickly without creating e Cold start executions
classes

Works in conjunction with Java

Stream to function concurrently

Similarities/Differences in Other Notable
Languages

® Presentin nearly every single modern languages including
Python, C, C++, etc.

® Most things are the same as in Java:
o

» An argument list: Zero or more yvariables separated with commas, usually in
parentheses. C#, Java, and Javascript allow omitting parentheses if there is only
one argument. C++ requires the arguments to have types, but the other statically
typed languages allow it without making it required.

o Abody: Statements to execute or an expression to evaluate and return. When
using statements, they are surrounded with braces, and a return statement can
be used to return a value. When the body is just an expression, braces are omitted.
(C++ only allows using statements and Python only allows using expressions. In
C#, braces can be omitted when the body is a single statement.)

e But there are syntactical and functional differences in
different languages.

Maximum value, in C, C++, C#, and Java Erlang [edit]

double max(double x, double y) {
if (x > y)
return x;

Erlang uses a syntax for anonymous functions similar to that of named functions ¢!

% Anonymous function bound to the Square variable

return y; Square = fun(X) -> X * X end.

X Named function with th
square(X) -> X * X.
and then as a lambda expression in various languages:

Go [edit]
C+

[](double x, double y) {

1f (x> y) foo := func(x int) int {
return x; return x * x

Go supports anonymous functions 2]

return y; ¥
fmt.Println(foo(10))

C# and Javascript Haskell | edit]
x, y) = { Haskell uses a concise syntax for anonymous functions (lambda expressions). The backslash is supposed to resemble A.
if (x > y)
return x; X -> x * x
return y;

Lambda expressions are fully integrated with the type inference engine, and support all the syntax and features of "ordinary” functions

map (\x -> x * x) [1..5] -- returns [1, 4, 9,
Java

(x, y) > { The following are all equivalent
if (x > y)
return x;
y=x+y
=\y >x+y
\xy ->x+y

return y;

X
X

Functional differences:

e Statically typed vs dynamically typed
O E.g. Python can assume return types while others may not

® Use of pointers in languages which allow it
® Injavascript, asynchronous vs synchronous lambda expressions

Js sequentialjs ®

exports.handler = (event) {
restrictedList = await checkRestrictedList()
accBalance = await checkAccountBalance()
marketOpen = await isMarketOpen()

allowed = (!restrictedlList &% accBalance > @ && marketOpen) ?

sturn {
tatusC 1 200,

allowed,
y: JSON.stringify('This took forever. Urg

Coding Examples - Interfaces

e EmptyFunction {
void run();

}

interface StringFunction {
String run(String str);

}

Face DualFunction {

int run(int a, int b);

}

Coding Examples - Sample Expressions

EmptyFunction empty = () -> {
System.out.println("No parameters here!");

s

StringFunction writeMessage = (String message) -> {
return “"The message is as follows:\n" + message;

s

DualFunction multiplication = (int a, int b) -> {
return a * b;

s

Coding Examples - Output

switch (args[@]) {

vy,
%)

empty.run();
’ No parameters here!

String message = writeMessage.run(“Tada! This is the result of

another Lambda Expression™);

The message is as follows:

message = exclaim.run(message); =S i
Tada! This is the result of another Lambda Expression!

System.out.println(message);

break;

int a = 99;

int b = 101;

int product = multiplication.run(a, b);

System.out.println(“The product of " + a + “ and " " is " The pPOdUCt of 99 and 101 is 9999
+ product);

break;

Sources for further reading

https://joshdata.me/lambda-
expressions.html#:~:text=A%20guide%20t0%20programming%20lambda,languag
es%20for%20writing%20short%20functions.

https://www.jrebel.com/blog/pros-and-cons-of-lambdas-in-java-8

http://worldcomp-proceedings.com/proc/p2015/SER2509.pdf

GitHub Repo for some Lambda Expressions:

https://github.com/Bey2001/Lambda-Expressions

https://joshdata.me/lambda-expressions.html
https://www.jrebel.com/blog/pros-and-cons-of-lambdas-in-java-8
http://worldcomp-proceedings.com/proc/p2015/SER2509.pdf
https://github.com/Bey2001/Lambda-Expressions

\ Potential Questions?

How do you feel about functional programming?

Are you now more likely to use lambda expressions in your work?

