Secure Coding Practices in Java:
Challenges and Vulnerabilities

Ryan Fasco, Abhilash Chauhan, John Oh, Sara Grammer

Introduction

® Common Vulnerability
o Caused by small # of programming errors

o Logic bomb
o Buffer overflow

® Secure Coding
o Reduces/ eliminates vulnerabilities
o Protect from cyber attacks/ exploitation

Secure Coding in Java

Simple Java code is secure Java code
Restrict privileges on the code

Trust boundaries

Design APIs with security in mind
Only use trusted libraries

Avoid sterilization

Be aware of what stores sensitive information in Java

o FErrors
B Use generic screen messages and helpful log messages
o Exceptions

B Filter sensitive information

o Logging
B Only log what is necessary and nothing too sensitive

(

Challenges

® Authentication
o Integration between different types of applications
o Implementation of security configurations
o Conversion between configurations
® Cryptography
o Vague error messages
o Difficulties between different languages
o Implicit constraints on APl usage

® Java EE security

® Access control
o Program context
o Executable environment
® Secure communication
o Validating SSL certificates
o Establishing secure connection

€ spring

| SECURITY

Vulnerabilities

Cross-site forgery
SSL/TLS
Password Hashing

Misinformation

@

Perpety stor arbeds e AV ORS00 The
rocuaet ken alypecink and Waebsite Visitar e nherienty
S0 00 VRS WO Py wreng 9 reguend to
b hagoed Wio he Wi e welrion

o Wiebabte veldater reguest and

tracedens fanek from the Wdior's —
SN DO T perpetinin
< ==
<

Webute

Perpetrator

o Porpotrexr forpes & reguend b
A rarelen 103 vy

ly

= stackoverflow

1. Use query parameterization

4

Use prepal injavatop ize your SQL

String query = "SELECT * FROM USERS WHERE

lastname = " + parameter;

String query = "SELECT % FROM USERS WHERE
lastname = 2";

PreparedStatement statement =
connection.prepareStatement(query);

statement.setString(l, parameter);

2. Use OpenlD Connect with 2FA

OpenlD Connect (OIDC) provides user information via an ID token in
addition to an access token. Query the /userinfo endpoint for
additional user information.

3. Scan your dependencies for known
vulnerabilities

Ensure your application does not use dependencies with known
vulnerabilities. Use a tool like Snyk to:

® Test your app dependencies for known vulnerabilities
® Automatically fix any existing issues

® Continuously monitor your projects for new vulnerabilities
over time

4. Handle sensitive data with care

Sanitize the toString() methods of your d

If using Lombok, annotate sensitive classes. @ToString.Exclude

Use @JsonIgnore and @JsonIgnoreProperties
to prevent sensitive properties from being serialized or deserialized.

What are the solutions?

5. Sanitize all input
Consider using the OWASP Java encoding library to sanitize input.

Assume all input is potentially malicious, and check for inappropriate
characters (whitelist preferable).

6. Configure your XML parsers to prevent XXE

Disable features that allow XXE on your SAXParserFactory and SAXParser, or
equivalent.

SAXParserFactory factory = SAXParserFactory.
newInstance();
SAXParser saxParser = factory.newSAXParser();

factory.setFeature("http://xml.org/sax/features/
external-general-entities", false);
saxParser.getXMLReader () .setFea-
ture("http://xml.org/sax/fea-
tures/external-general-entities", false);
factory.setFeature("http://apache.org/xml/
features/disallow-doctype-decl", true);

7. Avoid Java serialization

1f you must impl the serialization interface, ide the readObject
method to throw an exception.

private final void readObject(ObjectInputStream in)
throws java.io.IOException {
throw new java.io.IOException("Not allowed");

}

If you have to deserialize, use the ValidatingObjectinputStream from Apache
Commons 10 to add some safety checks.

FileInputStream fileInput = new FileInputStream
(fileName);
ValidatingObjectInputStream in = new Validatin

gObjectInputStream(fileInput);
in.accept(Foo.class);

Foo foo_ = (Foo) in.readObject();

8. Use strong encryption and hashing algo-
rithms

Always use existing encryption libraries, such as Google Tink, rather
than doing it yourself.

For password hashing, consider using BCrypt or SCrypt. If using
Spring, you can use it’s built-in BCryptPasswordEncoder and
SCryptPasswordEncoder for your hashing needs.

9. Enable the Java security manager

Enable via JVM properties on startup:
-Djava.security.manager

Create a policy that you use for your applications:

-Djava.security.policy==/my/custom.policy

10. Centralize logging and monitoring

Log auditable events, such as exceptions, logins and failed logins
with useful information including their origin.

Centralize logs from multiple servers with tools like Kibana.

Monitor key system resources that indicate attack spikes or load
from specific IP addresses.

Question

How can we enforce secure coding at VT?

References

https://www.whitehatsec.com/glossary/content/secure-coding

https://goldskysecurity.com/security-by-design-the-advantages-of-secure-coding-best-practices/

https://medium.com/@dinukadilshanfernando/what-is-secure-coding-ca56e36ce774

https://coralogix.com/blog/best-practices-for-writing-secure-java-code/

https://www.oracle.com/java/technologies/javase/seccodeguide.html

https://www.whitehatsec.com/glossary/content/secure-coding
https://goldskysecurity.com/security-by-design-the-advantages-of-secure-coding-best-practices/
https://medium.com/@dinukadilshanfernando/what-is-secure-coding-ca56e36ce774
https://coralogix.com/blog/best-practices-for-writing-secure-java-code/
https://www.oracle.com/java/technologies/javase/seccodeguide.html

