
Event Bus Architecture

Group 14:
Andrew Dunetz, Austin Fett, Chenming Wang, Daniel Gaugler, Matthew Layne, Ryell Deruijter

What is an Event Bus Architecture?

● Notify Subscribers of an Event
or Changed State

● Handle rule based routing to
certain handlers.

● Optionally, ensure the
Subscriber processes event.

Figure 1: A Very Simple Event Bus Architecture [1]

What is the Purpose?

● Allow a centralized way to notify all subscribers of important changes.

● Provides easy scalability.

● Customizable:
○ Send update to all subscribers.
○ Store update and notify subscribers with pointer to update.
○ Can use forced subscriber acknowledgement or no acknowledgement.
○ Rule based event notification.
○ etc.

Real world examples that Follow this architecture:

● Retail store with online
shopping (Belk, Target,
Walmart, etc.) (See figure.)

● Online Catalog prices and
details (Live-updating carts)

● Internet Routers

● Android framework

Figure 2: Retail Store Event Bus Example [3]

Advantages

● Creates a buffer between event and processors, acting as a centralizing
location
○ Communication can be done through events instead of through direct object reference

● Allows for decoupling of services
○ When coupling becomes cumbersome

● Push-based
○ Reduces resource consumption

Disadvantages

● Not efficient for small scale communications
(1 to 1 or 1 to few)

● Not ideal if there are many events to be
monitored compared to small subscriber
count

● Provides a potential centralized single point
of failure (“Bottleneck”)

○ An error in the event bus means everything in the
system will be affected

Figure 3: Single point of failure causing widespread
outage.

Disadvantages Continued

● There can be significant overhead/memory
consumption if there are many subscribers depending
on how the event bus is implemented
○ Requires very good infrastructure on both the ends (producer and

consumer)

● Update to the same event and duplication of an event
makes the system more challenging to handle, making
the system complex. This may also result in increased
time for testing and debugging scenarios

Implementation

Basic Implementation Details:

● Subscribers
● Events-data (ex: javascript)
● Notify
● Subscribe
● Unsubscribe
● Event Publisher

Questions?

What are some real world examples of situations
where this architecture would not work?

Resources:

1. https://medium.com/elixirlabs/event-bus-implementation-s-d2854a9fafd5
2. https://www.techyourchance.com/event-bus/
3. https://aws.amazon.com/event-driven-architecture/
4. https://ducmanhphan.github.io/2020-06-06-Event-Bus-pattern/

https://medium.com/elixirlabs/event-bus-implementation-s-d2854a9fafd5
https://www.techyourchance.com/event-bus/
https://aws.amazon.com/event-driven-architecture/
https://ducmanhphan.github.io/2020-06-06-Event-Bus-pattern/

