
OpenJDK 18
Group 12
Christopher Stoll, Kaeden Click, Daniel Guagliardo, Nathan Bolduc, Adnan Chowdhury, Jeremie Dufrois



Background & JEP

● JDK 18 released on March 22, 2022 as non-LTS release
● JDK Enhancement Proposal (JEP)
● Described by JEP 1
● Goal is to organize and define enhancement proposals for JDK 

release projects
● Create a roadmap based on proposals
● Central archive for changes and documentation



LTS vs. Non-LTS (Long-Term Support)

● LTS (Long Term Support) releases every two years
● Stability, security, and performance updates every quarter
● LTS releases: Java 7, 8, 11, and 17
● Non-LTS releases are a cumulative set of enhancements of the 

most recent LTS release
● Once a new feature release is available, previous non-LTS releases 

are superseded



Release Features

● 400: Uses UTF-8 by Default
● 408: Creates a Simple Web Server
● 413: Code Snippets are included in Java API Documentation
● 416: Reimplements Core Reflection with Method Handles
● 417: Has a Vector API (Third Incubator)
● 418: Introduces Internet-Address Resolution SPI
● 419: Introduces Foreign Function & Memory API (Second Incubator)
● 420: Introduces Pattern Matching for switch (Second Preview)
● 421: Deprecates Finalization for Removal



Simple Web Server

● Provides alternative to Node for testing web servers
● Easy to use

○ Calls jwebserver to start up a server
○ Uses the SimpleFileServer class to create within an application

● Useful for testing basic UI 
● Education & Testing Purposes

○ Not meant for production
○ Only handles GET and HEAD requests (not POST or others)



Internet-Address Resolution SPI

● Define a service-provider interface (SPI) for host name and 
address resolution, so that java.net.InetAddress can make use of 
resolvers other than the platform's built-in resolver.

● API currently uses the OS’s native resolver
● Combination of local host files and Domain Name System (DNS)
● Allows for more customization, and use of other resolution 

protocols like DNS over QUIC, TLS, and HTTPS
● API will use the built-in implementation if no resolver provider is 

specified.



Java Native Interface(JNI)

● Generate header file from java file
● Any changes to native function definitions you must regenerate 

header file
● Slow to convert c structures or c++ classes into java objects
● SLOW



Java Memory APIs

● ByteBuffer API
○ Safety checks
○ Slow

● sun.misc.Unsafe API
○ No safety checks
○ Fast

● Using JNI to call other memory allocators(malloc/free)
○ No safety checks
○ Slow



Memory API

● Memory Segment
○ Size of allocation
○ Scope

● Segment Allocator
○ Scope



Foreign Function Interface

● Symbol Lookup (CLinker)
○ CLinker.systemLinker()

● MethodHandle
○ Function

■ Use the CLinker for lookup of functions
○ FunctionDescriptor

■ Describes function arguments and return value
● Describing Types

○ Use MemoryLayout to describe structs



Foreign Function Interface Use

● Reversed model from JNI
○ Use jextract on C/C++ header files to generate java file

● Use any C/C++ function already written
● Allows practical interoperability between many languages



Switch Case Improvements
The Original

switch (str) {
            case "option_a":
                flag = true;
                break;
            case "option_b":
            case "option_c":
                // do something else
                break;
            default:
                // do something else different
                break;
}

switch (i) {
            case 1:

                flag = true;
                break;
            case 2:
            case 3:
                // do something else
                break;
            default:
                // do something else different
                break;
        }



Switch Case Improvements
New Syntax

switch (str) {
            case "option_a":
                flag = true;
                break;
            case "option_b":
            case "option_c":
                // do something else
                break;
            default:
                // do something else different
                break;
}

switch (str) {
     case "option_a" -> flag = true;
     case "option_b", "option_c" -> {
          // do something else
     }
     default -> {
          // do something else different
     }
}



Switch Case Improvements
Variables

String description = switch (day) {
     case SATURDAY, SUNDAY -> "Weekend";
     default -> "Weekday";
};

String description = switch (day) {
     case SATURDAY, SUNDAY -> "Weekend";
     default -> {
         yield "Weekday";
     }
};

String description;
switch (day) {
     case SATURDAY:
     case SUNDAY:
          description = “Weekend”;
          break;
     default:
          description = “Weekday”;
          break;
}



Switch Case Improvements
Pattern Matching

double result = switch (o) {
     case Integer i -> i.doubleValue();
     case Double d -> d;
     case String s -> Double.parseDouble(s);
     default -> 0d;
};

double result;
if (o instanceof Integer) {
     result = ((Integer) o).doubleValue();
} else if (o instanceof Double) {
     result = (Double) o;
} else if (o instanceof String) {
     result = Double.parseDouble((String) o);
} else {
     result = 0d;
}



Questions

● How do you see the new switch statement changes impacting 
their usage? How about their readability?

● With greatly reduced overhead what new applications will the 
new foreign function interface and new memory interface allow 
Java developers to create?



References

● https://openjdk.java.net/projects/jdk/18/
● https://www.oracle.com/java/technologies/java-se-support-roadmap.html
● https://res.infoq.com/news/2022/03/java-18-so-far/en/headerimage/java-istoc

k-image-01-1646072147555.jpg 
● https://www.baeldung.com/java-switch-pattern-matching
● https://blogs.oracle.com/javamagazine/post/java-long-term-support-lts
● http://openjdk.java.net/jeps/1

https://openjdk.java.net/projects/jdk/18/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://res.infoq.com/news/2022/03/java-18-so-far/en/headerimage/java-istock-image-01-1646072147555.jpg
https://res.infoq.com/news/2022/03/java-18-so-far/en/headerimage/java-istock-image-01-1646072147555.jpg
https://blogs.oracle.com/javamagazine/post/java-long-term-support-lts

