OpenlJDK 18

Group 12

Christopher Stoll, Kaeden Click, Daniel Guagliardo, Nathan Bolduc, Adnan Chowdhury, Jeremie Dufrois

Background & JEP

JDK 18 released on March 22, 2022 as non-LTS release

JDK Enhancement Proposal (JEP)

Described by JEP 1

Goal is to organize and define enhancement proposals for JDK
release projects

Create a roadmap based on proposals

Central archive for changes and documentation

JEP 0: JEP Index

Owner Mark Reinhold
Type Informational
Status Active
Created 2011/08/24 17:33
Updated 2022/04/11 15:42
This JEP is the index of all JDK Enhancement Proposals, known as JEPs.
See JEP 1 for an overview of the JEP Process.

P Act

P Act
P Act

1 Act

1 Act

F Clo spec/lang

FClo 9 core/lang

F Clo core/—

F Clo spec/lang

F Clo tools/javac

F Clo tools/javadocitool)

F Clo core/—
F Clo core/—
FClo 8 core/—

FClo 9 core/net
F Can core/—

FClo 8 core/—

FClo 8 security/—

F Clo 8 security/javax.net.ss|

LTS vs. Non-LTS (Long-Term Support)

LTS (Long Term Support) releases every two years

Stability, security, and performance updates every quarter

LTS releases: Java 7,8, 11, and 17

Non-LTS releases are a cumulative set of enhancements of the
most recent LTS release

Once a new feature release is available, previous non-LTS releases
are superseded

Release Features

400: Uses UTF-8 by Default

408: Creates a Simple Web Server

413: Code Snippets are included in Java APl Documentation

416: Reimplements Core Reflection with Method Handles

417: Has a Vector API (Third Incubator)

418: Introduces Internet-Address Resolution SPI

419: Introduces Foreign Function & Memory API (Second Incubator)
420: Infroduces Pattern Matching for switch (Second Preview)

421: Deprecates Finalization for Removal

Simple Web Server

Provides alternative to Node for testing web servers
Easy to use
Calls jwebserver to start up a server
Uses the SimpleFileServer class to create within an application
Useful for testing basic Ul
Education & Testing Purposes
Not meant for production
Only handles GET and HEAD requests (not POST or others)

Internet-Address Resolution SPI

Define a service-provider interface (SPI) for host name and
address resolution, so that java.net.lnetAddress can make use of
resolvers other than the platform's built-in resolver.

APl currently uses the OS’s native resolver

Combination of local host files and Domain Name System (DNS)
Allows for more customization, and use of other resolution
protocols like DNS over QUIC, TLS, and HTTPS

APl will use the built-in implementation if no resolver provider is
specified.

Java Native Interface(JNI)

Generate header file from java file

Any changes to native function definitions you must regenerate
header file

Slow to convert ¢ structures or c++ classes intfo java objects

SLOW

Java Memory APIs

ByteBuffer API
Safety checks
Slow
sun.misc.Unsafe API
No safety checks
Fast
Using JNI to call other memory allocators(malloc/free)
No safety checks
Slow

Memory AP]

Memory Segment
Size of allocation
Scope

Segment Allocator
Scope

Foreign Function Interface

Symbol Lookup (CLinker)
ClLinker.systemLinker()
MethodHandle

Function
Use the ClLinker for lookup of functions
FunctionDescriptor
Describes function arguments and return value
Describing Types
Use MemoryLayout to describe structs

Foreign Function Interface Use

Reversed model from JNI

Use jextract on C/C++ header files to generate java file
Use any C/C++ function already written
Allows practical interoperability between many languages

Switch Case Improvements

The Original

switch (str) {

case "option_a";
flag = true;
break;

case "option_b":

case "option_c":
// do something else
break;

default:
// do something else different
break;

switch (i) {

Eoise ||
flag = true;
break;

&ase 2.

case 3:
// do something else
break;

default:
// do something else different
break;

Switch Case Improvements

New Syntax
switch (str) { switch (str) {

case "option_a"; case "option_a" -> flag = frue;
flag = true; case "option_b", "option_c" ->{
break; // do something else

case "option_b": }

case "option_c": default ->{
// do something else // do something else different
break; }

default: }
// do something else different
break;

Switch Case Improvements

Variables

String description;
switch (day) {
case SATURDAY:
case SUNDAY:
description = “Weekend";
break;
default:
description = “Weekday";
break;

String description = switch (day) {
case SATURDAY, SUNDAY ->"Weekend";
default -> "Weekday';

I

String description = switch (day) {
case SATURDAY, SUNDAY -> "Weekend";
default -> {
yield "Weekday";

Switch Case Improvements
Patfern Matching

double result: double result = switch (o) {

case Integer i -> i.doubleValue();

case Double d -> d;

case String s -> Double.parseDouble(s);
default -> 0d;

if (o instanceof Integer) {
result = ((Integer) o).doubleValue();
} else if (0 instanceof Double) {
result = (Double) o;
} else if (o0 instanceof String) {
result = Double.parseDouble((String) o);
} else {
result = 0d;

Questions

How do you see the new switch statement changes impacting
their usage¢ How about their readability¢

With greatly reduced overhead what new applications will the
new foreign function interface and new memory interface allow
Java developers to create?

References

e hitps://openjdk.java.net/projects/jdk/18/
e https://www.oracle.com/java/technologies/java-se-support-roadmap.html

hitps://res.infog.com/news/2022/03/java-18-so-far/en/headerimage/java-istoc
k-image-01-1646072147555.jpg

e https://www.baeldung.com/java-switch-pattern-matching

e hitps://blogs.oracle.com/javamagazine/post/java-long-term-support-Its

e http://openjdk.java.net/jeps/1

https://openjdk.java.net/projects/jdk/18/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://res.infoq.com/news/2022/03/java-18-so-far/en/headerimage/java-istock-image-01-1646072147555.jpg
https://res.infoq.com/news/2022/03/java-18-so-far/en/headerimage/java-istock-image-01-1646072147555.jpg
https://blogs.oracle.com/javamagazine/post/java-long-term-support-lts

