
Testing Approaches

Overview

• What is a “Good” test?
• How to design tests?
–White-box testing
– Black-box testing

N. Meng, B. Ryder 2

What Is a “Good” Test?

• A good test
– has a high probability of finding an error
• Developers must understand the software

– is not redundant
• Every test should have a different purpose

– should be “best of breed”
• Prioritize tests that have the highest likelihood of

uncovering errors
– should be neither too simple nor too complex
• Don’t try to combine different tests together

N. Meng, B. Ryder 3

Internal and External Views

• Any engineered product can be tested in
two ways:
– Knowing the internal working of a product,

test whether “all gears mesh” and every
component has been adequately exercised

– Knowing the specification, test whether the
product conforms to specification

N. Meng, B. Ryder 4

Software Testing Methods

• White-box methods
– Internal-view approach

• Black-box methods
– External-view approach

N. Meng, B. Ryder 5

White-Box Testing

N. Meng, B. Ryder 6

... our goal is to ensure that all statements and
conditions have been executed at least once …

Why Cover?

• Logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

• We often believe that a path is not
likely to be executed; in fact, reality is
often counterintuitive

N. Meng, B. Ryder 7

Control Flow Graph

• A representation, using
graph notation, of all
paths that might be
traversed through a
program during its
execution
– Node: statement or block
– Edge: control flow

N. Meng, B. Ryder 8

i=input()

if(i<0)

j=i*i j=2*i+1

j=j*j

while(j != 1)

Entry

Exit

Data Flow Graph

• A representation of the “flow” of data
through a system

N. Meng, B. Ryder 9

i=input()

if(i<0) j=i*i j=2*i+1

j=j*j

while(j != 1)

Naïve Approach: Exhaustive Testing

• Enumerate all possible execution paths

N. Meng, B. Ryder 10

1

10

76 98

iteration == ?

2
3

4 5

Entry

Exit

How Many Paths When iteration == 1?

• 5 paths
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10

N. Meng, B. Ryder 11

How Many Paths When iteration == 20?

• 520 ≈ 1014

• If we execute one test per millisecond,
it would take 3,170 years to test this
program!!

N. Meng, B. Ryder 12

Efficient Approach: Selective Testing

• Control flow-based testing
– Basis path testing
– Condition testing
– Loop testing

• Data flow-based testing

N. Meng, B. Ryder 13

Selective Regression Testing

• Only need to rerun tests which might be
affected by program changes

• Idea: do parallel traversal of CFG(P) and
CFG(P’): when targets of like-labeled
edges differed, then use coverage
matrix to find tests that will exercise
that edge

N. Meng, B. Ryder 14

Basis Path Testing

• Independent Path
– Any path through the program that

produces at least one new set of processing
statements or a new condition

• To guarantee every statement is
executed at least once
– Statement coverage

N. Meng, B. Ryder 15

Basis Path Testing

• Cyclomatic complexity V(G)
– number of simple decisions + 1
– number of enclosed areas + 1

• A number of industry studies have indicated
that the higher V(G), the higher the
probability of errors.

N. Meng, B. Ryder 16

Basis Path Testing

N. Meng, B. Ryder 17

• What is the cyclomatic
complexity?
– V(G) = 6

• Design V(G) test cases that
cover all statements
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10
– 1,2,10,1,2,10

1

10

76 98

2
3

4 5

Entry

Exit

Condition Testing

• To guarantee every branch of the
predicate nodes is covered
– Branch coverage
• True and false branches of each IF
• The two branches of a loop condition
• All alternatives in a SWITCH

N. Meng, B. Ryder 18

Condition Testing

• Design test cases to cover all
branches
– 1,2,3,4,6
– 1,2,3,4,7
– 1,2,3,5,8
– 1,2,3,5,9
– 1,2,10
– 1,2,10,1,2,10

N. Meng, B. Ryder 19

1

10

76 98

2
3

4 5

Entry

Exit

Statement Coverage vs. Branch Coverage

• Branch coverage => Statement coverage,
but not vise versa
– E.g., if (c) then s;
• By executing only with c=true, we will achieve

statement coverage, but not branch coverage

N. Meng, B. Ryder 20

Loop Testing

• Test cases only focus on the validity of
various loop constructs
– Simple loops
– Nested loops
– Concatenated loops
– Unstructured loops

N. Meng, B. Ryder 21

Test Cases for Simple Loops

• Suppose n is the maximum number of
allowable passes through the loop
– Skip the loop entirely
– Only one pass through the loop
– m passes through the loop where m < n
– n-1, n, n+1 passes through the loop

N. Meng, B. Ryder 22

Test Cases for Nested Loops

• Suppose the iteration parameter i for
outer loop is in [n1, n2] range, while
the parameter j for inner loop is in
[m1, m2]
– Set i=n1, test inner loop
– Set j=typical value [m1, m2], test outer

loop

N. Meng, B. Ryder 23

∈

Test Cases for Concatenated Loops

if (the loops are independent of each
other)
then

treat each as a simple loop
else

treat them as nested loop

N. Meng, B. Ryder 24

Unstructured Loops?

• Whenever possible, redesign!

N. Meng, B. Ryder 25

Homework 3: Testing

N. Meng, B. Ryder 26

int gcdByBruteForce(int n1, int n2) {
if (n1 == 0)

return n2;
if (n2 == 0)

return n1;
int gcd = 1;
for (int i = 1; ; i++) {

if (i > n1)
break;

if (i > n2)
break;

if (n1 % i == 0) {
if (n2 % i == 0) {

gcd = i;
}

}
}
return gcd;

}

Requirements of Test Cases
• Draw a CFG, where nodes represent statements,

and edges represent the control flow
• Index each CFG node with a number
• Design two sets of test cases to separately achieve
– Statement Coverage: Ensure that every statement is

covered at least once
– Branch Coverage: Ensure that every branch is covered

at least once
• For each designed the test case, describe
– the test inputs, and
– the CFG nodes (i.e., the path) covered by the test

N. Meng, B. Ryder 27

• Please organize each set of test cases
in a table, as shown below:

N. Meng, B. Ryder 28

n1 n2 path

0 1 1, 2 (here 1 and 2 represent
the CFG node indices)

… … …

Black-box Testing

N. Meng, B. Ryder 29

requirements

events
input

output

• Black-box testing
focuses on the software
functional requirements

• Testers devise various
input conditions to fully
exercise all functional
requirements

Black-Box vs. White-Box

• Black-box is a complementary approach
instead of an alternative to white-box
techniques

N. Meng, B. Ryder 30

o check “doing the
right thing”

o check “doing things
rightly”

o applied during later
stages of testing

o performed early in
the testing process

o input-oriented o structure-oriented

Black-Box Methods

• Equivalence partition
• Boundary value analysis

N. Meng, B. Ryder 31

Equivalence Partition

• Divide the input domain of a program
into equivalence classes
– For different values from the same class,

the software should behave equivalently
• Test with values from different classes

to find errors

N. Meng, B. Ryder 32

How to Define Equivalence Classes?

• An input condition specifies a range
– Define one valid and two invalid equivalence

classes
– E.g., for input range [2, 5], the equivalent

classes are (-∞,2), [2, 5], (5,+∞)
• An input condition specifies a specific

value
– Define one valid and two invalid equivalence

classes

N. Meng, B. Ryder 33

How to Define Equivalence Classes?

• An input condition specifies a member
of a set
– Define one valid and one invalid equivalence

class
• An input condition is Boolean
– Classes “true” and “false”

N. Meng, B. Ryder 34

Boundary Value Analysis

• It complements equivalence partition
technique by
– focusing on boundary values of each

equivalent class,
– deriving test cases from the output domain

as well

N. Meng, B. Ryder 35

How to Pick Values to Test?

• If an input condition specifies a range [a,b]
– Design test cases with values a and b and just

above and just below a and b
• If an input condition specifies a number of

values
– Design test cases with values min and max and

surrounding values
• Apply the above guidelines to output

conditions
N. Meng, B. Ryder 36

How to Pick Values to Test?

• If internal program data structures
have prescribed boundaries, be certain
to design test cases to exercise the
data structure at its boundary
– e.g., a table has a defined limit of 100

entries

N. Meng, B. Ryder 37

Example: Search for a Value in an Array

• Input: an array and a value
• Output: return the index of some

occurrence of the value, or -1 if the
value does not exist

• One partition: size of the array
– 0, 1, n (n > 1)

• Another partition: location of the value
– 0, m(m>0 && m<n), n-1 (last), -1

N. Meng, B. Ryder 38

Example: Test Inputs

Array Value Output
empty 5 -1

[7] 7 0
[7] 2 -1

[1,6,4,7,2] 1 0
[1,6,4,7,2] 4 2
[1,6,4,7,2] 2 4
[1,6,4,7,2] 3 -1

N. Meng, B. Ryder 39

