
Software Refactoring

Overview

• What is refactoring?
• When to apply refactoring?
• How to apply refactoring?
• Refactoring types
• Obstacles of applying refactorings

N. Meng, L. Zhang 2

Refactoring

• Definition
– The process of changing a software system

in such a way that it does not alter the
external behavior of the code yet improves
its internal structure

• Major source: Martin Fowler et al. 1999
– “Refactoring: Improving the Design of

Existing Code”

N. Meng, L. Zhang 3

Goals of Refactoring

• Improve software design
• Make software easier to understand
• Help to find bugs
• Help to program faster

N. Meng, L. Zhang 4

When to Apply Refactoring?

• Design
– Requirements get changed
–More variations are revealed or expected

• Implementation
– Add function
– Need to fix bugs
– Do code review

• As software evolves, more refactorings
are applied

N. Meng, L. Zhang 5

Implementation Refactoring

• Make code changes
• Run tests to ensure semantics is

preserved
• If every test is passed, move on
• Otherwise, fix the problem or undo the

change

N. Meng, L. Zhang 6

Decide refactoring to apply

• Identify some “bad code smells”
– Duplicated code, long method, large class,

long parameter list, …
• Match the bad code with known

refactoring patterns to decide what
refactoring to apply

• Note that bad code smells may appear
gradually as software evolves

N. Meng, L. Zhang 7

Refactoring Types

• Extract method/class/interface/…
• Inline method/class/interface/…
• Move field/method/…
• Pull up field/method/…
• Remove method/parameter/…
• …

N. Meng, L. Zhang 8

Extract Class
• Too much phone

info detail as part
of the Customer
class violates high
cohesion principle

• Split the class into
two to keep phone
info in a separate
class

N. Meng, L. Zhang 9

public class Customer {
private String name;
private String phoneAreaCode;
private String phoneNumber;

}

public class PhoneInfo {
private String areaCode;
private String number;

}
public class Customer {

private String name;
private PhoneInfo phone;

}

Extract Interface

N. Meng, L. Zhang 10

public class Customer {
private String name;
private String getName() {
return name;

}
public void setName(String string) {
name = string;

}
public String toXML() {
return “<Customer><Name>” + name + “</Name></Customer>”;

}
}

Extract Interface (cont.)

• Motivation
– Some clients only use a subset of a class’

responsibilities
• E.g., toXML()

– There are several classes providing certain
functions in common
• E.g., Customer, Employee, Product

• Solution
– Declare the subset of operations in a

separate interface

N. Meng, L. Zhang 11

N. Meng, L. Zhang 12

public interface SerializableToXML{
public abstract String toXML();

}

• Benefits
– Information hiding: only expose the relevant

operations to specific clients

public class Customer implements SerializableToXML {
private String name;
private String getName() {

return name;
}
public void setName(String string) {

name = string;
}
public toXML() {

return “<Customer><Name>” + name +
“</Name></Customer>”;

}
}

Obstacles of Refactoring

• Problem: Databases
• Reason
– Business applications are tightly coupled to

database schema
–With business logic change, you may also need

to change database schema and migrate data
• Advice
– Put a separate layer between object model

and database model
N. Meng, L. Zhang 13

Obstacle 2: Changing Interfaces

• Problem: Some refactoring, such as
“Rename Method”, modify interfaces

• Reasons: There is a problem if the
interface is used by code that you
cannot find and change

• Advice
– Don’t publish interfaces prematurely
–Maintain both the old and new interfaces

for a while

N. Meng, L. Zhang 14

Obstacle 3: Design Changes That Are
Difficult to Refactor

• Problem: some design decisions are so
central that you cannot count on
refactoring to change your mind later

• Advice:
– Think about design alternatives and assess

difficulty of refactoring from one to
another

– Go with the simplest one if refactoring is
not difficult; otherwise, put more effort
into design

N. Meng, L. Zhang 15

