Database Design

Overview

- What is database?
- Why do we bother?
- Relational database
- Entity-Relationship Modeling
- Mapping class diagrams to tables

What Is Database?

- A tool that stores data, and lets you create, read, update, and delete the data
- Information container
- Various types of database
 - Flat files
 - spreadsheets
 - -XML
 - relational databases
 - mySQL, Oracle, DB2, Access

Why Do We Use Database?

- Every non-trivial application uses databases to keep program states, to store, manipulate, and retrieve data
- Database plays a critical role in applications - Corrupted data => execution failure
 - Poor data organization => poor performance
- A poorly designed database application allows developers to put in arbitrary data
 - Enter a string "none" as a phone number

Relational Database

- A digital database with a collection of tables
 - Each table contains rows and columns, with a unique key for each row
 - Each entity type described in a database has its own table
 - E.g., "Employee", "Item", "Order"
 - Each row represents an instance of the entity
 - E.g., "John Jenny", "Soap"
 - Each column represents an attribute
 - E.g., "phone number", "price"

Relational Databases (cont.)

Primary Key/Unique Key: to uniquely specify a tuple in a table

Foreign Key: an attribute in a relational table that matches the primary key column of another table. It can be used to cross-reference tables.

Entity-Relationship Models

- Entity-relationship (ER) diagrams are similar to semantic object modelings (class diagrams)
- It uses different notations
- Focuses more on relations and less on class structure

Entities and Attributes

- An entity is similar to a semantic object
- It includes attributes that describe the object

Relationships

- An ER diagram indicates a relationship between entities with a diamond
- Sometimes arrows are added to indicate direction of relationship

Cardinality

 Numbers used to describe relationship quantitatively

Inheritance

• A triangle named "IsA" represents the inheritance relationship

Mapping Class Diagrams to Tables

Mapping Classes to Tables

Student

studentId firstName lastName

Courses

CourseId

Name

Description

Key Points about Tables

- Sometimes you need to explicitly add a primary key to distinguish data in tables
- Database usually provides functionality to automatically increment primary key

Mapping Associations

Mapping One-to-One Associations

What Are the Tables?

Mapping One-to-Many Associations

		Product
SaleslineTtem	Decenibed by	Specification
quantity:Integer getSubtotal()	* 1	desc:String
		Id:DescID
		•••

What Are the Tables?

Mapping Many-to-One Associations

What Are the Tables?

Mapping Many-to-Many Associations to Table

Course	1 Containal *	Student
courseId		studentId firstName lastName
description	1* Takes 1	
•••		•••

What Are the Tables?

Multiple Many-to-Many

- What if we want to know students' enrollment over time for each year and semester
 - E.g., to distinguish students enrolled different time)?

Multiple-Object Associations

- Definition
 - Many different kinds of objects are collectively associated with each other
- Case study
 - Making a movie requires a whole horde of people including a director, a bunch of actors, and a huge number of crew members

Class Diagram for Movie-making

ER Diagram for Movie Making

Consider the Relationship as a Combination of Simpler Relationships

Repeated Attribute Associations

- Some entities have multiple attributes that represent either the same kind of data or very similar kinds of data
 - Some people may have multiple phone numbers for different purposes
 - Some people may have only one number to serve all purposes

Person
personId
firstName
lastName
workPhone
cellPhone
homePhone
dayPhone
nightPhone

. . .

How to design the tables to avoid repetition or sparse data?

Reflexive Associations

- An object refers to an object of the same class
 - One-to-One reflexive association
 - One-to-Many reflexive association
 - Many-to-Many reflexive association

One-to-One Reflexive Association

Person personId firstName lastName spouse

...

Persons	
PersonId	
FirstName	
LastName	
SpouseId	

One-to-Many Reflexive Association

Employee personId firstName lastName manager

...

Employees	
PersonId	
FirstName	
LastName	
ManagerId	

Many-to-Many Reflexive Association

Inheritance

