
Detailed Design

N.Meng, B.Ryder 1



Overview

• What is detailed design?
• What is OO design?
• How should we do OO design?

N.Meng, B.Ryder 2



Detailed Design

• To decompose subsystems into modules
• Two approaches of decomposition
– Procedural
• system is decomposed into functional modules 

which accept input data and transform it to 
output data 
• achieves mostly procedural abstractions 

– Object-oriented
• system is decomposed into a set of 

communicating objects
• achieves both procedural + data abstractions

N.Meng, B.Ryder 3



Abstraction
• To focus on important, inherent properties 

while suppressing unnecessary details
– Permits separation of concern
– Allows postponement of design decision

• Two abstraction mechanisms
– Procedural abstraction

• Specification describes input/output
• Implementation describes algorithm

– Data abstraction
• Specification describes attributes, values
• Implementation describes representation and 

manipulation

N.Meng, B.Ryder 4



OOD

• To identify responsibilities and assign them 
to classes and objects

• Responsibilities for doing
– E.g., create an object, perform calculations, 

invoke operations on other objects 
• Responsibilities for knowing
– E.g., attributes, data involved in calculations, 

parameters when invoking operations

N.Meng, B.Ryder 5



How Do Developers Design Objects?

• Code
– Design-while-coding, ideally with powerful 

tools such as refactorings. From mental 
model to code

• Draw, then code
– UML Diagrams

• Only draw
– The tool generates everything from 

diagrams

N.Meng, B.Ryder 6



How Much Time Spent Drawing UML 
before Coding?

• Spend a few hours or at most one day (with 
partners) near the start of the iteration

• Draw UML for the hard, creative parts of 
the detailed object design

• Stop and transition to coding
• UML drawings
– inspiration as a starting point
– the final design in code may diverge and improve

N.Meng, B.Ryder 7



Work Results

• Dynamic models 
– help design the logic or behaviors of the code 
– UML interaction diagrams
• (Detailed) sequence diagrams, or
• Communication diagrams

• Static models 
– help design the definition of packages, class 

names, attributes, and method signatures
– (Detailed) UML class diagrams

N.Meng, B.Ryder 8



Guidelines

• Spend significant time doing interaction 
diagrams, not just class diagrams

• Apply responsibility-driven design and 
GRASP principles to dynamic modeling

• Do static modeling after dynamic 
modeling

N.Meng, B.Ryder 9



UML Interaction Diagrams

• To illustrate how objects interact via 
messages

• Two types of interaction diagrams
– Sequence diagrams
– Communication diagrams

N.Meng, B.Ryder 10



Sequence diagram

• Illustrate interactions in a kind of fence 
format, in which each new object is 
added to the right

N.Meng, B.Ryder 11

doTwo

doThree

:A myB: B

doOne



What Is The Possible Representation 
in Code?

N.Meng, B.Ryder 12

public class A
{

private B myB = new B();
public void doOne() 
{

myB.doTwo();
myB.doThree();

}
}



Communication Diagram

• To illustrate object interactions in a 
graph or network format, in which 
objects can be placed anywhere on the 
diagram

N.Meng, B.Ryder 13

: AdoOne

1: doTwo

myB: B
2: doThree



Sequence vs. Communication

• Sequence diagram
– Tool support is better and more notation 

options are available
– Easier to see the call flow sequence

• Communication diagram
–More space-efficient
–Modifying wall sketches is easier

N.Meng, B.Ryder 14



How Should We Do OO Design?

• Responsibility-driven design (RDD)
– Think about how to assign responsibilities 

to collaborating objects
– Think about following questions
• What are the responsibilities of an object?
• Who does it collaborate with?
• What design patterns should be applied?

N.Meng, B.Ryder 15



Responsibilities

• Obligations or behaviors of an object in 
terms of its role

• Two types of responsibilities:
– Doing responsibilities
– Knowing responsibilities

N.Meng, B.Ryder 16



Doing Responsibilities

• Doing something itself, such as creating 
an object or doing a calculation
– “a Sale object is responsible for creating

its SalesLineItem objects”
• Initiating action in other objects
• Controlling and coordinating activities in 

other objects

N.Meng, B.Ryder 17

Self-behaviors and collaborations or 
interactions with others



Guideline

• The transition of responsibilities into 
classes and methods is influenced by the 
granularity of the responsibility
– Big responsibilities take hundreds of classes 

and methods
• “provide access to relational databases” may involve 

two hundred classes and thousands of methods
– Little responsibilities take one method
• “create a Sale” may involve only one method in one 

class

N.Meng, B.Ryder 18



Knowing Responsibilities

• Knowing about private encapsulated data
• Knowing about related objects
• Knowing about things it can derive or 

calculate
– “a Sale object is responsible for knowing its 

total”

N.Meng, B.Ryder 19

Self-data and relevant objects/data



Guideline

• The attributes and associations illustrated by 
domain objects in a domain model often 
inspire the responsibilities
– If the domain model Sale class has a time 

attribute, it’s natural that a software Sale
class knows its time.

– Design classes do not always have identical 
attributes as domain classes

N.Meng, B.Ryder 20



GRASP: A Methodical Approach to OOD

• Principles (Patterns) to guide choices 
about assigning responsibilities
– Creator
– Information expert
– Low coupling 
– Controller 
– High cohesion

• Applicable to design and implementation

N.Meng, B.Ryder 21



Principle 1: Creator (doing)

• Problem: Who creates an A?
• Advice: Assign class B the responsibility 

to create an instance of class A if:
– B “contains” or compositely aggregates A
• Whole-part; Assembly-part (e.g., body-leg)

– B records A
– B closely uses A
– B has the initializing data for A

N.Meng, B.Ryder 22



Example

• Who should be responsible for creating 
a SalesLineItem?

• Sale aggregates SalesLineItem objects

N.Meng, B.Ryder 23

:Register 

makeLineItem(id, quantity)

:Sale 

:Sales
LineItem

create(id, quantity)



Summary

• Usually, the container or recorder of 
objects are creators

• Contraindications: complex creation
– E.g. using recycled objects for performance
• Both trucks and buses aggregate tires, so apply 

a Factory pattern to get instead of creating
tires

N.Meng, B.Ryder 24



Principle 2: Information Expert 
(knowing)

• Problem: Who knows the information to 
fulfill a responsibility?

• Advice: Assign the responsibility to 
class A if the information:
– is about A’s attributes
– is derivable by A, sometimes may depend on 

some attributes of relevant classes

N.Meng, B.Ryder 25



Example

• Who knows the information about a 
Sale’s total amount of money?

N.Meng, B.Ryder 26

Sale
date
time

getTotal()



Example

• Who knows the information about a Sale 
line item’s subtotal?

N.Meng, B.Ryder 27

Sales
LineItem
quantity

getSubtotal()



Example

• Who knows the information of an item’s 
price?

N.Meng, B.Ryder 28

Product 
Specification
description

price
itemID

getPrice()



Summary

• Objects fulfill tasks using their info or 
the info of objects they know of 

• It is crucially important to separate 
concerns between collaborative objects
– E.g., getTotal() & getSubTotal()
– Related to low coupling and high cohesion 

(discuss later)

N.Meng, B.Ryder 29



Principle 3: Low Coupling (relations)

• Problem: How to reduce the impact of 
change?

• Advice: put data and operations 
together
– Goal: Avoid unnecessary coupling

N.Meng, B.Ryder 30



Examples of Coupling

N.Meng, B.Ryder 31

• Class A has an attribute (field) of class B
• An instance of A calls an instance of B
• A has a method that references B instances
– local variable/parameter/return value is a 

reference (i.e., pointer) to a B object
• A is a direct or indirect subclass of B



Example: Two Alternatives

N.Meng, B.Ryder 32

:Register makePayment(x) p:Payment

2:addPayment(p)

1: create(x)

: Sale

:Register makePayment(x)

:Payment

makePayment(x)

create(x)

:Sale



The second is better

• Sale needs to know payment. The 
coupling is always there.

• Register simply delegates Sale to 
create the payment, without creating 
the payment itself

N.Meng, B.Ryder 33



Principle 4: Controller (doing)

• Problem: What first object beyond the UI 
layer receives and coordinates (“controls”) a 
system operation?

• Advice: Assigns “control” to class A if it is:
– Facade controller: a class representing the entire 

system or device
– Use case controller: a class representing a use 

case within which the event occurs
• E.g., XyzHandler, XyzCoordinator, XyzSession

– Xyz=name of the use case

N.Meng, B.Ryder 34



Example

• System events in POS system
– endSale(), enterItem(), makeNewSale(), 

makePayment(), …
– Typically generated by the GUI

N.Meng, B.Ryder 35

:SaleWindow

:???

enterItem(itemID,qty)

User Interface Layer

Domain Layer



Using Facade Controller

• Facade controller: entire system/device
– POS_System, Register

• Used when there are NOT too many 
system events
– Avoid “bloated” controllers (e.g., too many 

responsibilities)

N.Meng, B.Ryder 36



Using Use-case Controllers

• Use-case controller: handler for all 
system events in a use case

• Used when there are MANY system 
events
– Several manageable controller classes
– Track the state of the current use-case 

scenario

N.Meng, B.Ryder 37



Principle 5: High Cohesion (relations)

• Problem: How to keep object focused, 
and manageable?

• Advice: DON’T put too much data and 
operations into the same class
– Goal: avoid unnecessary responsibilities

N.Meng, B.Ryder 38



Example

• Who creates Payment objects? 

• If Register does the work for all 
system events, it will become bloated 
and not cohesive

N.Meng, B.Ryder 39

:Register makePayment()

:Sale 

1:create()

2: addPayment(p)

p:Payment



A better solution: delegation

• Our better solution: delegate Payment 
creation to Sale 
– Higher cohesion for Register
– Also reduces coupling

N.Meng, B.Ryder 40

:Register makePayment()

:Payment

makePayment()

create()

:Sale



Rule of thumb

• Class with high cohesion has relatively 
small number of methods with highly 
related functionality, and does not do 
too much work (LAR, p 317)

N.Meng, B.Ryder 41



Benefits

• Clear separation of concerns
– Easy to comprehend, reuse, and maintain

• Often results in low coupling
• Contraindications: 
– Distributed server objects need to be larger, 

w/ coarse-grained operations
• Reduces the number of remote calls

– To simplify maintenance by an expert 
developer

N.Meng, B.Ryder 42


