Detailed Design



Overview

» What is detailed design?
* What is OO design?
* How should we do OO design?



Detailed Design

» To decompose subsystems into modules

» Two approaches of decomposition

— Procedural

» system is decomposed into functional modules
which accept input data and transform it to
output data

» achieves mostly procedural abstractions

— Object-oriented

» system is decomposed into a set of
communicating objects

* achieves both procedural + data abstractions



Abstraction

» To focus on important, inherent properties
while suppressing unnecessary details

— Permits separation of concern
— Allows postponement of design decision

« Two abstraction mechanisms

— Procedural abstraction
« Specification describes input/output
« Implementation describes algorithm
— Data abstraction

« Specification describes attributes, values

* Implementation describes representation and
manipulation



OOD

» To identify responsibilities and assign them
to classes and objects
» Responsibilities for doing

— E.g., create an object, perform calculations,
invoke operations on other objects

» Responsibilities for knowing

— E.g., attributes, data involved in calculations,
parameters when invoking operations



How Do Developers Design Objects?

* Code

— Design-while-coding, ideally with powerful
tools such as refactorings. From mental
model to code

* Draw, then code
— UML Diagrams
* Only draw

— The tool generates everything from
diagrams



How Much Time Spent Drawing UML
before Coding?

Spend a few hours or at most one day (with
partners) near the start of the iteration

Draw UML for the hard, creative parts of
the detailed object design

Stop and transition to coding
UML drawings

— Inspiration as a starting point
— the final design in code may diverge and improve



Work Results

* Dynamic models
— help design the logic or behaviors of the code

— UML interaction diagrams
* (Detailed) sequence diagrams, or
« Communication diagrams

« Static models

— help design the definition of packages, class
names, attributes, and method signatures

— (Detailed) UML class diagrams



Guidelines

» Spend significant time doing interaction
diagrams, not just class diagrams

* Apply responsibility-driven design and
GRASP principles to dynamic modeling

» Do static modeling after dynamic
modeling



UML Interaction Diagrams

 To illustrate how objects interact via
messages

» Two types of interaction diagrams
— Sequence diagrams
— Communication diagrams



Sequence diagram

« Tllustrate interactions in a kind of fence

format, in which each new object is
added to the right

doOne

doTwo

;

doThree




What Is The Possible Representation
in Code?

public class A
{
private B myB = new B();
public void doOne()
{
myB.doTwo () ;
myB.doThree();



Communication Diagram

 To illustrate object interactions in a
graph or network format, in which
objects can be placed anywhere on the
diagram

doOne —

1: doTwo l
2: doThree l




Sequence vs. Communication

« Sequence diagram

— Tool support is better and more notation
options are available

— Easier to see the call flow sequence
» Communication diagram

— More space-efficient
— Modifying wall sketches is easier



How Should We Do OO Design?

» Responsibility-driven design (RDD)
— Think about how to assignh responsibilities
to collaborating objects

— Think about following questions
* What are the responsibilities of an object?
* Who does it collaborate with?
* What design patterns should be applied?



Responsibilities

» Obligations or behaviors of an object in
terms of its role

» Two types of responsibilities:
— Doing responsibilities
— Knowing responsibilities



Doing Responsibilities

» Doing something itself, such as creating
an object or doing a calculation

—"a Sale object is responsible for creating
its SalesLineItem objects”

» Initiating action in other objects
* Controlling and coordinating activities in
other objects

Self-behaviors and collaborations or
interactions with others



Guideline

» The transition of responsibilities into
classes and methods is influenced by the
granularity of the responsibility

— Big responsibilities take hundreds of classes
and methods

* "provide access to relational databases” may involve
two hundred classes and thousands of methods

— Little responsibilities take one method

* "create a Sale"” may involve only one method in one
class



Knowing Responsibilities

 Knowing about private encapsulated data
 Knowing about related objects

» Knowing about things it can derive or
calculate

—"a Sale object is responsible for knowing its
total”

Self-data and relevant objects/data



Guideline

« The attributes and associations illustrated by
domain objects in a domain model often
inspire the responsibilities
— If the domain model class has a time

attribute, it's natural that a software
class knows its time.

— Design classes do not always have identical
attributes as domain classes



GRASP: A Methodical Approach to OOD

* Principles (Patterns) to guide choices
about assigning responsibilities
— Creator
— Information expert
— Low coupling
— Controller
— High cohesion

» Applicable to design and implementation



Principle 1: Creator (doing)

* Problem: Who creates an A?

* Advice: Assign class B the responsibility
to create an instance of class A if:

— B "contains” or compositely aggregates A
* Whole-part; Assembly-part (e.g., body-leg)

— B records A
— B closely uses A
— B has the initializing data for A



Example

» Who should be responsible for creating
a SalesLineItem?

 Sale aggregates SaleslLineItem objects

makelLineItem(id, quantity)

, ' create(id, quantity)

>




Summary

» Usually, the container or recorder of
objects are creators

 Contraindications: complex creation

— E.g. using recycled objects for performance

* Both trucks and buses aggregate tires, so apply
a Factory pattern to get instead of creating
tires



Principle 2: Information Expert
(knowing)

* Problem: Who knows the information to
fulfill a responsibility?

 Advice: Assign the responsibility to
class A if the information:
—is about A’'s attributes

—is derivable by A, sometimes may depend on
some attributes of relevant classes



Example

» Who knows the information about a
Sale's total amount of money?

Sale

date

Time
getTotal()




Example

« Who knows the information about a Sale

line item's subtotal?

Sales
LineItem

quantity

getSubtotal()

N.Meng, B.Ryder

27



Example

 Who knows the information of an item's
price?

Product
Specification
description
price
itemID
getPrice()

N.Meng, B.Ryder



Summary

» Objects fulfill tasks using their info or
the info of objects they know of

* It is crucially important to separate
concerns between collaborative objects
—E.g., getTotal() & getSubTotal()

— Related to low coupling and high cohesion
(discuss later)



Principle 3: Low Coupling (relations)

* Problem: How to reduce the impact of
change?

* Advice: put data and operations
together
— Goal: Avoid unnecessary coupling



Examples of Coupling

Class A has an attribute (field) of class B
An instance of A calls an instance of B

A has a method that references B instances

— local variable/parameter/return value is a
reference (i.e., pointer) fo a B object

A is a direct or indirect subclass of B



Example: Two Alternatives

makePayment(x) :Register | — L createld p:Payment
—» 2:addPayment(p) . SC(I e
kp_;()_. """"""
makePayment(x .
Y :Regl ster makePayment(x) : SC(IC

create(x) l

:Payment

N.Meng, B.Ryder 32



The second is better

* Sale needs to know payment. The
coupling is always there.

* Register simply delegates Sale to
create the payment, without creating
the payment itself



Principle 4: Controller (doing)

* Problem: What first object beyond the UT
layer receives and coordinates (“controls”) a
system operation?

 Advice: Assigns "control” to class A if it is:

— Facade controller: a class representing the entire
system or device

— Use case controller: a class representing a use
case within which the event occurs
 E.g., XyzHandler, XyzCoordinator, XyzSession

— Xyz=name of the use case



Example

» System events in POS system

—endSale(), enterItem(), makeNewSale(),
makePayment(), ...

— Typically generated by the GUI

User Interface Layer

enterItem(itemID,qty)

Domain Layer




Using Facade Controller

 Facade controller: entire system/device
— POS_System, Register

» Used when there are NOT too many
system events

— Avoid "bloated” controllers (e.g., oo many
responsibilities)



Using Use-case Controllers

« Use-case controller: handler for all
system events in a use case

» Used when there are MANY system
events
— Several manageable controller classes

— Track the state of the current use-case
scenario



Principle 5: High Cohesion (relations)

* Problem: How to keep object focused,
and manageable?

 Advice: DON'T put too much data and
operations into the same class

— Goal: avoid unnecessary responsibilities



Example

« Who creates Payment objects?

—>
makePayment() —» licreate()

—» 2: addPayment(p)

» If Register does the work for all
system events, it will become bloated
and not cohesive



A better solution: delegation

* Our better solution: delegate Payment
creation to Sale

— Higher cohesion for Register

— Also reduces coupling

—» —»
makePayment() makePayment()
create() l

:Payment




Rule of thumb

* Class with high cohesion has relatively
small number of methods with highly
related functionality, and does not do
too much work (LAR, p 317)



Benefits

* Clear separation of concerns
— Easy to comprehend, reuse, and maintain

» Often results in low coupling

* Contraindications:

— Distributed server objects need to be larger,
w/ coarse-grained operations
* Reduces the number of remote calls

— To simplify maintenance by an expert
developer



