
High-level Design



Overview

• What is software architecture?
• Classic architecture styles
• UML Package Diagram
• How to do architecture design?

N. Meng, B. Ryder 2



What is Software Architecture?

• “The architecture of a system is 
comprehensive framework that 
describes its form and structure -- its 
components and how they fit together” 

--Jerrold Grochow

N. Meng, B. Ryder 3



What is Architectural Design?

• Design overall shape & structure of system
– the components 
– their externally visible properties
– their relationships 

• Goal: choose architecture to reduce risks in 
SW construction & meet requirements 

N. Meng, B. Ryder 4



SW Architectural Styles

• Architecture composed of
– Set of components
– Set of connectors between them
• Communication, co-ordination, co-operation

– Constraints 
• How can components be integrated?

– Semantic models 
• What are the overall properties based on 

understanding of individual component properties?

N. Meng, B. Ryder 5



Architecture Patterns

• Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture

N. Meng, B. Ryder 6



Pipe & Filter Architecture

• A pipeline contains a chain of data 
processing elements
– The output of each element is the input of the 

next element
– Usually some amount of buffering is provided 

between consecutive elements

N. Meng, B. Ryder 7

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe

pipe pipe

pipe

Data



Example: Optimizing Compiler 

N. Meng, B. Ryder 8

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]

Compiler Structure

IR

O
pt

 1

O
pt

 2

O
pt

 n…
IR



Pros and Cons

• Other examples
– UNIX pipes, signal processors 

• Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations 

concurrently
• Cons
– Hard to handle errors 
–May need encoding/decoding of input/output 

N. Meng, B. Ryder 9



Event-based Architecture

N. Meng, B. Ryder 10

EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

• Promotes the production, detection, 
consumption of, and reaction to events

• More like event-driven programming



Example: GUI

N. Meng, B. Ryder 11



Pros and Cons

• Other examples:
– Breakpoint debuggers, phone apps, robotics

• Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers 

easy to add
• Cons
– Components have no control over order of 

execution

N. Meng, B. Ryder 12



Layered/Tiered Architecture

• Multiple layers are defined to allocate 
responsibilities of a software product

• The communication between layers is 
hierarchical

• Examples: OS, network protocols 

N. Meng, B. Ryder 13

kernalkernel

utilities
application layer

users



Variant architectures

• 2-layer architecture
– Client-Server Architecture

• 3-layer architecture
–Model-View-Controller 

N. Meng, B. Ryder 14



3-layer Architecture

N. Meng, B. Ryder 15

Data

Presentation

Logic

• Presentation: UI to interact with users
• Logic: coordinate applications and perform 

calculations
• Data: store and retrieve information as 

needed



Model-View-Controller

N. Meng, B. Ryder 16

https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool



Key Points about MVC

• View layer should not handle system 
events

• Controller layer has the application logic 
to handle events

• Model layer only respond to data 
operation

N. Meng, B. Ryder 17



3 layer: Pros and Cons

• Pros 
– Clear separate concerns
• Easy to develop, change & reuse

• Cons
– Hard to maintain when changes in one layer 

can affect other layers

N. Meng, B. Ryder 18



Example: Online Ordering System

N. Meng, B. Ryder 19

http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96



Layered Architecture: Pros and Cons

• Pros
– Support increasing levels of abstraction 

during design
– Support reuse and enhancement

• Cons
– The performance may degrade 
– Hard to maintain

N. Meng, B. Ryder 20



How to Do Architecture Design?

• When decomposing a system into 
subsystems, take into consideration
– how subsystems share data
• data-centric or data-distributed

– how control flows between subsystems
• as scheduled or event-driven

– how they interact with each other
• via data or via method calls

N. Meng, B. Ryder 21


