Class Diagrams & Sequence
Diagrams

UML Class Diagram

» Definition
— A visual representation of main objects and
their relations for a system

* Elements
— Classes containing: Attributes, Operations

— Various relationship: Association,
Aggregation, Composition, Generalization

Store

String address
String hame

void processSale()
void handleReturns() |

Grocery

>

Store

x
Grocery O—OQ

D

Store

Grocery
Store

Legends

> Class name: abstract concepts

Attributes: properties relevant
to the problem

— Operation (Method signatures):

behaviors of the class

Generalization: "is-a" relationship.
A sub-class inherits all attributes
and operations of its super class

Aggregation: "has-a" relationship.
The container and elements can exist
independently from each other

Legends

Composition: stronger “has-a"

Car |1 0.1 - relationship. If the container is
Engine ® o destroyed, the elements it contains

are usually destroyed as well.

Association: can generally represent

subscribe & —any relationship other than "is-a".
0.* ~y\agazine [gtk Aggregation and Composition

Person

are variants of Association.

Multiplicity: what Name and Direction Arrow: to
number of instances enhance understanding of the

can be associated? relationship

System Sequence Diagrams

Overview

* What is System Sequence Diagram?
« UML Sequence Diagram
» Case Study: Simplified "Process Sale"

System Sequence Diagram

» Definition
— A picture that shows, fora use case, the

events that external actors generate, their
order, and inter-system events

* Happy path + frequent/complex alternatives

* All systems are treated as a black box,
focusing on WHAT instead of HOW

Compared with Class Diagram

* Class Diagram describes the static
structure of software

« System Sequence Diagram describes
the dynamic interactions between
actors and the system

Roles of SSDs

» Generated from inspection of a use case

— Illustrate input and output events related
to the system

— Emphasize events cross the boundary
between actors and systems

* Input to OOD

UML Sequence Diagram

* A notation to illustrate actor interactions
and operations initiated by them

* Only the interaction between users and
the system is modeled in system sequence
diagram

Smith: Student

Legends: Lifeline

» Definition
— Represents either actors or systems that

participate by either sending or receiving
messages (events)

* Naming convention
— Instance Name: Class Name

— Other variants Use a named object only when:
. * You refer fo it now and then
: Student Smith - You don't mention its type

« There are anonymous same-
typed objects to distinguish
from

Legends: Note, Stereotype, Messages

» Stereotypes can be added to objects to
indicate their roles

gadors |

user

aboundaw»j «corrtrol»j

» Messages represent

events

N. Meng, B. Ryder

«errt'rty»j «data base»j
book sales
| |
| |
| |
sender receiver
' sendMessage Rk
D S

; r'eTur'nMessaga

Legends: Combined Fragment
» Definition
— An interaction fragment which defines a
combination of messages between objects

— Interaction operator(relation) + interaction
operands (messages) + interaction constraints
(guards)

— Operators
* loop - iteration
e alt - alternatives
* opt - option (optional step)

— for online shop purchase sequence diagram you may use opt to
describe how user can add gift wrapping if she wishes

Example: Simplified "Process Sale”

1. Cashier starts a new sale

2. Cashier enters item id

3. System records sale line item and presents description and
running total

Repeat Steps 2-3 unti/ done

:Cashier :System
makeNewSale() .
[l—:w%% enterItem(itemID, quantity) J{

description, total

N. Meng, B. Ryder 14

Example cont.

4. System presents total with taxes calculated.
5. Customer pays and System handles payment

:Cashier :System
endSale() |

total with taxes I

The message makePayment i
invokes the method makePayment

N. Meng, B. Ryder 15

Abstractions in SSDs

« Events and return values are abstractions
— Independent of mechanism & representation
* makePayment(amount)

— Shows input info

— Looks like a method call, but is really an
abstraction of an event

* Name: should capture the intent

— Avoid specifying implementation choices
« enterItem(itemID) is better than scan(itemID)

Alternative Scenario

la. Customer tells Cashier they have a tax-exempt status (e.qg.,
seniors, native people)

1. Cashier verifies, and then enters tax-exempt status code
2. System records status

:Cashier :System

| makeNewSale »i
opT_J i startTaxExempt() J
[tax- | enter TaxExemptCode(code) |
exempt] -
I |
|loopJ . . |
[more | enterItem(itemID, quantity) N
items] i 4 o | i
e ____d escription, total _ ,

I

N. Meng, B. Ryder 17

Homework: Withdraw Money from
ATM

* Draw a sequence diagram for the use
case description you turned in for HW1

— Casual use case description
- SSD

* Due: 03/28/2022 11:59pm

