
Software Process

Overview

• What is software process?
• Generic process framework

• Examples of process models
• Unified Process (UP)
• Agile software development

N. Meng, B. Ryder 2

Software Process

• Definition [Pressman]
– a framework for the tasks that are

required to build high-quality software.
– to provide stability, control and

organization to an otherwise chaotic
activity

N. Meng, B. Ryder 3

What does SW process mean?

• For a single programmer
• Planning (time, resources, assignments)
• Design and development
• Tracking and measuring progress

• For a team of practitioners
• Organizational planning (time, resources, etc.)
• Hiring, training, tool acquisition, etc.
• Process assessment and improvement

• For software engineering in general
• Helps organize SE around ‘best practices’

N. Meng, B. Ryder 4

Elements of SW process
Term Examples

o People o Software developers, project
managers, customers

o Tasks o Analyze requirements
o Work products o Requirements specification
o Planning o Estimate needed resource, time,

defects
o Conducting o Track progress and work results
o Assessing o Define and measure metrics like

quality, progress, etc.

A process defines who is doing what, when and how
to reach a certain goal.

N. Meng, B. Ryder 5

Generic View of SW Process

Definition phase

Development phase

Support phase

U
m

brella activities

N. Meng, B. Ryder 6

Definition Phase
• Tasks related to problem definition
– What? - requirements, constraints, environment, etc.

• Step 1: System engineering
– Ascertain roles of hardware, software, people,

databases, operational procedures, etc. in system
• Step 2: Analysis of the problem
– Requirement analysis

• Understanding what the users need and want
– Domain analysis

• Illustrate key concepts in a set of SW systems (reuse)
• Step 3: Project planning
– Resources (e.g., people), cost, schedule

N. Meng, B. Ryder 7

Development Phase

• Tasks related to problem solution
– How? - architecture, programming, testing, etc.

• Step 1: software design (the blueprint)
– Design models that describe structure,

interactions, etc.
• Step 2: code generation/implementation
• Step 3: software testing

– Goal: uncover as many errors as possible

N. Meng, B. Ryder 8

Support (Maintenance) Phase

• Tasks related to software evolution
– Changes? – Definition and development in the

context of existing software
• Adaptation to change in the environment
– New hardware, changes in OS, business rules, etc.

• Correction of defects (Y2K problem, $308B)
• Enhancements (new features, etc.)
• Refactoring (to ease future changes)

N. Meng, B. Ryder 9

Some Umbrella Activities

• Project management
– Tracking and control of people, process, cost, etc.

• Quality assurance (QA)
– Formal technical reviews of work products
– Software testing
– Keeping docs consistent with code base

• Configuration management
– Controls the changes in work products using

systems like SVN, Git

N. Meng, B. Ryder 10

Observations

• Process models are idealizations
– The real world is a very complex place

• They can be very difficult to execute
– Conformance can be faked

• But, they provide a roadmap for SE work to
organize an otherwise chaotic activity

N. Meng, B. Ryder 11

Code-and-Fix Process

• The first thing people tried in the 1950s
1.Write program
2.Improve it (debug, add functionality,
improve efficiency, ...)
3.GOTO 1

• Works for small 1-person projects and
for some CS course assignments

N. Meng, B. Ryder 12

Problems with Code-and-Fix

• Poor match with user needs
• Bad overall structure – No blueprint
• Poor reliability - no systematic testing
• Maintainability? What’s that?
• What happens when the programmer

quits?

N. Meng, B. Ryder 13

Code-and-Fix Process

N. Meng, B. Ryder

From McConnell, After the Goldrush, 1999

14

Visible Progress

A More Advanced Process

N. Meng, B. Ryder 15

Visible Progress

Examples of Process Models

• Waterfall model
• Prototyping model
• Spiral model
• Incremental model

N. Meng, B. Ryder 16

Waterfall Model

• The “classic” process model since 1970s
– Also called “software life cycle”

N. Meng, B. Ryder 17

Analysis

Testing & Integration

Maintenance

Design

Implementation

Waterfall Phases

• Analysis: Define problems
– requirements, constraints, goals and domain

concepts
• Design: Establish solutions
– System architecture, components, relationship

• Implementation: Implement solutions
• Testing and integration: Check solutions
– Unit testing, system testing

• Maintenance: the longest phase

N. Meng, B. Ryder 18

Analysis

Testing & Integration

Maintenance

Design

Implementation

Key Points of the Model

• The project goes through the phases
sequentially

• Possible feedback and iteration across
phases
– e.g., during coding, a design problem is

identified and fixed
• Typically, few or no iterations are used
– e.g., after a certain point of time, the

design is “frozen”

N. Meng, B. Ryder 19

Waterfall Model Assumptions
• All requirements are known at the start and

stable
• Risks(unknown) can be turned into known

through schedule-based invention and
innovation

• The design can be done abstractly and
speculatively
– i.e., it is possible to correctly guess in advance how

to make it work
• Everything will fit together when we start the

integration

N. Meng, B. Ryder 20

How was the model developed?

a) A group of researchers developed and
proposed it as the best option of
existing methods

b) A group of practitioners innovated a
method that became the most widely
used model

c) A person copied a picture of a method
that he understood and could explain
and put it into a standard document

N. Meng, B. Ryder 21

Winston Royce wrote a recommendation about how to
structure process for large software projects

based on his experiences from NASA

Success story: space shuttle software

N. Meng, B. Ryder 22

As the 120-ton space
shuttle sits
surrounded by almost
4 million pounds of
rocket fuel, exhaling
noxious fumes, visibly
impatient to defy
gravity, its on-board
computers take
command.

Charles Fishman, 1996

“This software is bug-free”

• Impressive statistics
– The last 3 versions of the program--

420,000 lines of code had just 1 error each
– The last 11 versions of the software had a

total of 17 errors
– Commercial programs of equivalent

complexity would have 5,000 errors

N. Meng, B. Ryder 23

How did they write the right stuff?

• 1/3 of the process before coding
• NASA and Lockhead Martin groups agree

in the most minute detail about everything
• Specs are almost pseudo-code
• Nothing in the specs is changed without

agreement and understanding
• Task: upgrade software to add GPS

navigation
– 1.5% changes in program/6366 LOC
– 2500 page specs for the change

N. Meng, B. Ryder 24

How expensive is the software?

• 260 people
• >40,000 pages of specifications
• 20 years
• $35 million Annual budget
• $700 million overall budget
• 700 million/420k = $1600/line of code

N. Meng, B. Ryder 25

Pros and Cons

• Pros: widely used, systematic, good for
projects with well-defined requirements
– Makes managers happy

• Cons:
– The actual process is not so sequential

• A lot of iterations may happen
– The assumptions usually don’t hold
– Working programs are not available early

• High risk issues are not tackled early enough
– Expensive and time-consuming

N. Meng, B. Ryder 26

When would you like to use waterfall?

N. Meng, B. Ryder 27

• Work for big clients
enforcing formal
approaches on vendors

• Work on fixed-scope,
fixed-price contracts
without many rapid
changes

• Work in an experienced
team

Observation

• Top three reasons for at least partial
failure projects
– lack of user input
– incomplete requirements, and
– changing requirement

N. Meng, B. Ryder 28

Standish group 1995

Prototyping Model

• Build a prototype when customers have
ambiguous requirements

N. Meng, B. Ryder 29

Analysis

Testing &
Integration

Maintenance

Design

Implementation

Prototyping
Customer
Evaluation

Review &
Update

Customer
satisfied

Key Points of the Model

• Iterations: customer evaluation followed
by prototype refinement

• The prototype can be paper-based or
computer-based

• It models the entire system with real data
or just a few screens with sample data

• Note: the prototype is thrown away!

N. Meng, B. Ryder 30

Success stories of prototyping

N. Meng, B. Ryder 31

• Organizations of all types do it
– Boeing builds digital prototypes of its

aircraft allowing the detection of design
conflicts

– Disney uses storyboards to work through
the process of producing feature-length
films

• Online systems and web interfaces

Pros and Cons

• Pros
– Facilitate communication about requirements
– Easy to change or discard
– Educate future customers

• Cons
– Iterative nature makes it difficult to plan and

schedule
– Excessive investment in the prototype
– Bad decisions based on prototype

• E.g., bad choice of OS or PL

N. Meng, B. Ryder 32

When would you like to use prototyping?

N. Meng, B. Ryder 33

• When the desired
system has a lot of
interactions with users

Spiral Model

• A risk-driven evolutionary model that combines
development models (waterfall, prototype, etc.)

34

Spiral model
(SOM)

Spiral Phases
• Objective setting
– Define specific objectives, constraints,

products, plans
– Identify risks and alternative strategies

• Risk assessment and reduction
– Analyze risks and take steps to reduce risks

• Development and validation
– Pick development methods based on risks

• Planning
– Review the project and decide whether to

continue with a further loop

N. Meng, B. Ryder 35

What Is Risk?

• Something that can go wrong
– People, tasks, work products

• Risk management
– risk identification
– risk analysis
• the probability of the risk, the effect of the risk

– risk planning
• various strategies

– risk monitoring

N. Meng, B. Ryder 36

Risk Planning [Sommerville]

N. Meng, B. Ryder 37

Risk Strategy
o Recruitment
problems

o Alert customer of potential difficulties and the
possibility of delays, investigate buying-in-components

o Defective
components

o Replace potentially defective components with bought-
in components of known reliability

o Requirements
changes

o Derive traceability information to assess requirements
change impact, maximize information hiding in the design

o Organizational
financial
problems/restruct
uring

o Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business

o Underestimated
development time

o Investigate buying-in components, investigate the use
of a program generator

Key Points of the Model

• Introduce risk management into process
• Develop evolutionary releases to
– Implement more complete versions of

software
–Make adjustment for emergent risks

N. Meng, B. Ryder 38

Pros and Cons

• Pros
– High amount of risk analysis to avoid/reduce risks
– Early release of software, with extra

functionalities added later
– Maintain step-wise approach with “go-backs” to

earlier stages
• Cons
– Require risk-assessment expertise for success
– Expensive

N. Meng, B. Ryder 39

When to use the model?

N. Meng, B. Ryder 40

• Large and mission-
critical projects

• Medium to high-risk
projects

• Significant changes are
expected

Incremental Model

• A sequential of waterfall models

N. Meng, B. Ryder 41

Analysis

Testing & Integration

Design
Implementation

Iteration n: 3 weeks
(for example)

Analysis

Testing & Integration

Design
Implementation

Iteration n+1: 3 weeks
(for example)

Release n Release n + 1

Feedback, adaptation

Key Points of the Model

• Iterative: many releases/increments
– First increment: core functionality
– Successive increments: add/fix functionality
– Final increment: the complete product

• Require a complete definition of the whole
system to break it down and build
incrementally

N. Meng, B. Ryder 42

Pros and Cons

• Pros
– Early discovery of software defects
– Early delivery of working software
– Less cost to change/identify requirements

• Cons
– Constant changes (“feature creep”) may

erode system architecture

N. Meng, B. Ryder 43

When to use the model?

N. Meng, B. Ryder 44

• The requirements of
the complete system
are clear

• Major requirements
must be defined while
some details can evolve
over time

• Need to get a product
to the market early

Spiral model vs. incremental model

• Iterative models
–Most projects build

software iteratively
• Risk-driven vs.

client-driven

N. Meng, B. Ryder 45

Unified Process (UP)

• An example of iterative process for
building object-oriented systems
– Very popular
– By the same folks who develop UML

• It provides a context for our discussion
of analysis and design

N. Meng, B. Ryder 46

A Little History

• “The three amigos”: Grady Booch, Ivar
Jacobson, James Rumbaugh
– Early 90s: Separated methodologies for object-

oriented analysis and design (OOAD)
– 1996: Created the Unified Modeling Language

(UML)
– 1999: Defined the Unified Process (UP) in

Rational Software Inc.
• Refinement: Rational Unified Process (RUP)

– Adaptable process framework + tools

N. Meng, B. Ryder 47

Phases in UP

N. Meng, B. Ryder 48

Inception Elaboration Construction Transition

• Inception: preliminary investigation
• Elaboration: analysis, design, and some coding
• Construction: more coding and testing
• Transition: beta tests and development
• Each phase may be enacted in an iterative

way, and the whole set of phases may be
enacted incrementally

Inception Phase

• Investigate approximate, business case,
scope, and vague estimates
– Should we even bother?

• Some basic analysis to decide whether
to continue or stop

• Inception is NOT “requirement” in
waterfall

N. Meng, B. Ryder 49

Elaboration Phase
• Most requirement analysis
• Most design
• Some coding and testing
– Implementation and testing for core architecture

and high-risk requirements
• Deeper investigation of scope, risks, and

estimates
• Work products
– Requirement models (UML use cases)
– An architectural description
– A development plan

N. Meng, B. Ryder 50

Construction Phase

• More coding and testing
– Implementation and testing for the

remaining lower risk and easier elements
– Integration

• Work products ready for delivery
– A working software system
– Associated documentation

N. Meng, B. Ryder 51

Transition Phase

• Beta tests and deployment
–Moving the system from the development

community to the user community
– This is important but ignored in most

software process model
• Work products
– A documented software system that is

working correctly in its operational
environment

N. Meng, B. Ryder 52

Iteration Length

• Iteration should be short (2-6 weeks)
– Small steps, rapid feedback and adaptation
– Massive teams with lots of communication – but no

more than 6 months
• Iterations should be timeboxed (fixed length)
– Integrate, test and deliver the system by a

scheduled date
– If not possible: move tasks to the next iteration

N. Meng, B. Ryder 53

Reasons for Timeboxing

• Improve programmer productivity with
deadlines

• Encourage prioritization and decisiveness
• Team satisfaction and confidence
–Quick and repeating sense of completion,

competency, and closure
– Increase confidence for customers and

managers

N. Meng, B. Ryder 54

UP Disciplines

• Discipline: an activity and related artifact(s)
• Artifact: any kind of work product
• We will focus on artifacts related to two

disciplines
– Requirement modeling

• requirement analysis + use-case models, domain
models, and specs.

– Design
• design + design models

N. Meng, B. Ryder 55

Agile Software Development

• A timeboxed iterative and evolutionary
development process

• It promotes
– adaptive planning
– evolutionary development,
– incremental delivery
– rapid and flexible response to change

N. Meng, B. Ryder 56

Any iterative method, including the UP, can be
applied in an agile spirit.

The Agile Manifesto
• We are uncovering better ways of

developing software by doing it and helping
others do it. Through this work we have
come to value:
– Individuals and interactions over Processes and

tools
– Working software over Comprehensive

documentation
– Customer collaboration over Contract

negotiation
– Responding to change over Following a plan

N. Meng, B. Ryder 57

Kent Beck et al. 2001

Key Points of Agile Modeling
• The purpose of modeling is primarily to

understand, not to document
• Modeling should focus on the smaller

percentage of unusual, difficult, tricky parts of
the design space

• Model in pairs (or triads)
• Developers should do the OO design modeling

for themselves
• Create models in parallel
– E.g., interaction diagram & static-view class diagram

N. Meng, B. Ryder 58

Models are inaccurate

• Only tested code demonstrates the true
design

• Treat diagrams as throw-away
explorations

• Use the simplest tool possible to
facilitate creative thinking
– E.g., sketching UML on whiteboards

• Use “good enough” simple notation

N. Meng, B. Ryder 59

Agile Methods

• Agile Unified Process (Agile UP)
• Dynamic systems development method

(DSDM)
• Extreme programming (XP)
• Feature-driven development (FDD)
• Scrum

N. Meng, B. Ryder 60

Agile UP

• Keep it simple
– Prefer a small set of UP activities and artifacts
– Avoid creating artifacts unless necessary

• Planning
– For the entire project, there is only a high-level

plan (Phase Plan), to estimate the project end
date and other major milestones

– For each iteration, there is a detailed plan
(Iteration plan) created one iteration in advance

N. Meng, B. Ryder 61

Pros and Cons

• Pros
– Customer satisfaction by rapid, continuous

delivery of useful software
– Close, daily cooperation between business people

and developers
– Better software quality and lower cost

• Cons
– People may lose sight of the big picture
– Heavy client participation is required
– Poor documentation support for training of new

clients/programmers
N. Meng, B. Ryder 62

When to use agile methods?

• Changing
requirements

• Faster time to
market and
increased
productivity

• Frequently used in
start-up companies

N. Meng, B. Ryder 63

A Borrowed Joke

How many software engineers does it take
to change a light bulb?

Five. Two to write the specification, one
to screw it in, and two to explain why the
project was late.

N. Meng, B. Ryder 64

