
Course InformationCourse Information

Course Topics
• Software process
• Requirement analysis
• Software design
– Architecture styles
– Design patterns

• Unified Modeling Language
• Software testing
• Software maintenance
• SE research topics

N. Meng, B. Ryder 2

Grading Scale
• I may choose to

curve the grades at
the end of the
term

N. Meng, B. Ryder 3

Score Grade
93-100 A
90-92.9 A-
87-89.9 B+
83-86.9 B
80-82.9 B-
77-79.9 C+
73-76.9 C
70-72.9 C-
60-69.9 D
<60 F

Group Project
• Work in teams (5-6 people)
• One project
– Choose from a set of given topics
– Come up with a new project idea and get the

instructor’s approval
• Go through analysis and design
• Turn in the software artefacts
• Give a presentation
• Peer review inside/between groups

N. Meng, B. Ryder 4

Introduction to Software
Engineering

Overview
• Software in our lives
• Hardware vs. Software
• What is software engineering?
• Software engineering - precis of a short

history by [Barry Boehm, ICSE’06 Keynote]
• Software myths
• Learning objectives

6N. Meng, B. Ryder

Software is ubiquitous
• System software
– OS, compilers, device drivers

• Business software
– Payroll, accounting

• Engineering/scientific software
– Computer-aided design, simulation

• Embedded software
– GPS navigation, Flight control, Toaster

7N. Meng, B. Ryder

Software is ubiquitous
• Product-line software (PC-like based)
– Spreadsheets, word processing, games

• Web-based software
– Gmail, Facebook, Youtube

• Artificial intelligence software
– Robotics, artificial neural networks,

theorem proving

8N. Meng, B. Ryder

What is Software?

• Software encompasses:
– Executable programs
– Data associated with these programs
– Documents: user requirements, design

documents, user/programmer guides

• Definition [Pressman]
– The product that software professionals

build and then support over the long term

9N. Meng, B. Ryder

Hardware vs. Software

o Manufactured
o Wear out
o Built using components
o Relatively simple

o Developed/ engineered
o Deteriorate
o Custom built
o Complex

10N. Meng, B. Ryder

Manufacturing vs. Development

o Hardware is difficult
or impossible to modify

o Software is routinely
modified and upgraded

oHiring more people
causes more work done

oThis is not always true

oCosts are more
concentrated on products

o Costs are more
concentrated on design

11N. Meng, B. Ryder

Hardware does “wear out”

Failure curve of hardware—”bathtub curve” 12N. Meng, B. Ryder

Software does “deteriorate”

Failure curve of software

13N. Meng, B. Ryder

Component based vs. Custom built

• Hardware products employ many
standardized design components.

• Most software is always custom built.
• The software industry does seem to be

moving (slowly) toward component-based
construction.

14N. Meng, B. Ryder

Software Crisis?
• Projects running over-budget
• Projects running over-time
• Software was very inefficient
• Software was of low quality
• Software often did not meet requirements
• Projects were unmanageable and code is

difficult to maintain
• Software was never delivered

15N. Meng, B. Ryder

What is software engineering?
Pressman’s book

A discipline that encompasses
• process of software development
• methods for software analysis, design,

construction, testing, and maintenance
• tools that support the process and the

methods

16N. Meng, B. Ryder

Process, Methods, Tools
• Various tasks required to build and

maintain software
– e.g. design, testing, etc.

• SE process: the organization and
management of these tasks
– various process models

• SE methods: ways to perform the tasks
• SE tools: assist in perform the tasks
– UML tools, IDEs, issue tracking tools

17N. Meng, B. Ryder

Importance of Historical
Perspective

• Santayana half-truth:
– “Those who cannot remember the past are

condemned to repeat it”
• Don’t remember failures?
– Likely to repeat them

• Don’t remember successes?
– Unlikely to repeat them

Cf Barry Boehm, ICSE06 Keynote 18N. Meng, B. Ryder

History of SW Development

1950’s: engineer software like hardware

• Hardware-oriented software applications
– Airplanes, circuits

• Economics: computer time more valuable
than people time
– Boehm supervisor, 1955: “We’re paying

$600/hour for that computer, and $2/hour
for you, and I want you to act accordingly.”

Cf Barry Boehm, ICSE06 Keynote 20N. Meng, B. Ryder

1960’s: software is NOT LIKE hardware

• Properties
– Invisible, complex, has to be executed by

computers, hard to change, doesn’t wear
out, unconstrained by physical laws of
nature

• Demand for programmers exceeded
supply
– Cowboy programmers as heroes
– Computer Science Department formed

Cf Barry Boehm, ICSE06 Keynote 21N. Meng, B. Ryder

• Code-and-fix process
• Better infrastructures
– OS, compilers, utilities

• Some large successes
– Apollo, ESS

• Failure of most large systems
– Unmaintainable spaghetti code
– Unreliable, undiagnosable systems
– Code-and-fix process is too expensive

22N. Meng, B. Ryder

1970’s Formal and Waterfall Approaches

• Structured programming, eliminate goto
• Formal methods
• Specification, development, verification
• Problems

– Successful for small, critical programs
– Proofs show presence of defects, not absence
– Scalability of programmer community

• Waterfall process model

Cf Barry Boehm, ICSE06 Keynote 23N. Meng, B. Ryder

Large-Organization HW/SW Cost Trends
(1973)

Cf Barry Boehm, ICSE06 Keynote

 100

80

60

40

20

0
1955 1970 1985

Hardware

Software

Year

% of
total cost

24N. Meng, B. Ryder

1980’s Synthesis: Productivity, Reuse,
Objects

• Major SW productivity enhancers
–Working faster: tools and environments
–Working smarter: processes and methods
–Work avoidance: reuse, simplicity, objects
– Technology silver bullets: AI, Do what I

mean, programming by example
• Reuse libraries
• Object orientation
– Smalltalk, Eiffel, C++

Cf Barry Boehm, ICSE06 Keynote 25N. Meng, B. Ryder

1990’s maturity models and agile methods

• Capacity Maturity Models (CMM)
– Reliance on explicit documented knowledge
– Heavyweight but verifiable, scalable

• Agile Methods
– Reliance on interpersonal tacit knowledge
– Lightweight, adaptable, not very scalable

• Other trends
– reverse engineering, Open Source SW,

Spiral process model

Cf Barry Boehm, ICSE06 Keynote 26N. Meng, B. Ryder

2000’s Synthesis

• Model-driven development
• Risk-driven model
• Service-oriented architecture
• Hybrid agile/plan-driven product and

process architectures

27N. Meng, B. Ryder

Existing SW Problems
• Software is too expensive
• Software takes too long to build
• Software quality is low
• Software is too complex to support and

maintain
• Software does not age gracefully
• Not enough highly-qualified people to

design and build software
28N. Meng, B. Ryder

Data by the Standish Group (1995)
• $81B on canceled software projects
• $59B for budget overruns
• Only 1/6 projects were completed on time and

within budget
• Nearly 1/3 projects were canceled
• Over half projects were considered

“challenged”
• Among canceled and challenged projects
– Budget overrun: 189% of original estimate
– Time overrun: 222% of original estimate
– Only 61% of the originally specified features

N. Meng, B. Ryder 29

Software Myths

Management Myths
• “If we get behind schedule, we can just

add more people and catch up”
• Fact: Adding people to a late project

makes it even later
– The people working now must spend time

educating the newcomers

31N. Meng, B. Ryder

Customer Myths
• “A general statement of objectives is

enough to start programming”

• Fact: An ambiguous statement of
objectives leads to project failures
– Unambiguous requirements need

effective and continuous communication
between customer and developer

32N. Meng, B. Ryder

Customer Myths
• “Changes in requirements are easy to

deal with because software is flexible”
• Fact: Changes are hard and expensive

33N. Meng, B. Ryder

Practitioner’s Myths
• “Once we get the program running, we

are done”
• Fact: 60-80% effort comes after the

software is delivered for the first time
– Bug fixes, feature enhancements, software

reengineering, migration

34N. Meng, B. Ryder

Practitioner’s Myths
• “Until I get the program running, I

cannot assess quality”
• Fact: Software reviews can be applied once

code is written and are very effective;
pair programming techniques as well

35N. Meng, B. Ryder

Practitioner’s Myths
• “The only deliverable work product is the

running program”
• Fact: Need the entire configuration
– Documentation of system requirements,

design, programming, and usage

36N. Meng, B. Ryder

Practitioner’s Myths
• “SE will slow us down by requiring

unnecessary documentation”
• Fact: SE is about creating quality
• Better quality -> reduced rework

-> faster delivery time
• Brooks recommends time division of:

1/3 planning; 1/6 coding; 1/4
component test and early system
test; 1/4 system test

37N. Meng, B. Ryder

Learning Objectives
• Knowledge of basic concepts in software

engineering
• Ability to do Object-oriented

requirement analysis
• Ability to do Object-oriented design
• Ability to build and test software
• Good command of UML and Patterns
• Understanding importance of teamwork

38N. Meng, B. Ryder

Software Engineering
• Software is complex, expensive, late,

low-quality, hard to maintain
• Goal: approach these problems using

software engineering
• Key message: the field is very young –

The term “SE” was introduced in 1968

39N. Meng, B. Ryder

