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Course Topics
• Software process 
• Requirement analysis
• Software design
– Architecture styles
– Design patterns

• Unified Modeling Language
• Software testing
• Software maintenance 
• SE research topics
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Grading Scale
• I may choose to 

curve the grades at 
the end of the 
term
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Score Grade
93-100 A
90-92.9 A-
87-89.9 B+
83-86.9 B
80-82.9 B-
77-79.9 C+
73-76.9 C
70-72.9 C-
60-69.9 D
<60 F



Group Project
• Work in teams (5-6 people)
• One project
– Choose from a set of given topics
– Come up with a new project idea and get the 

instructor’s approval
• Go through analysis and design
• Turn in the software artefacts
• Give a presentation
• Peer review inside/between groups
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Introduction to Software 
Engineering



Overview
• Software in our lives
• Hardware vs. Software
• What is software engineering?
• Software engineering - precis of a short 

history by [Barry Boehm, ICSE’06 Keynote] 
• Software myths
• Learning objectives
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Software is ubiquitous
• System software
– OS, compilers, device drivers 

• Business software 
– Payroll, accounting 

• Engineering/scientific software
– Computer-aided design, simulation

• Embedded software
– GPS navigation, Flight control, Toaster
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Software is ubiquitous
• Product-line software (PC-like based)
– Spreadsheets, word processing, games 

• Web-based software
– Gmail, Facebook, Youtube

• Artificial intelligence software
– Robotics, artificial neural networks, 

theorem proving
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What is Software?

• Software encompasses:
– Executable programs
– Data associated with these programs
– Documents: user requirements, design 

documents, user/programmer guides

• Definition [Pressman]
– The product that software professionals 

build and then support over the long term
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Hardware vs. Software

o Manufactured
o Wear out
o Built using components
o Relatively simple

o Developed/ engineered
o Deteriorate
o Custom built
o Complex
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Manufacturing vs. Development

o Hardware is difficult 
or impossible to modify 

o Software is routinely 
modified and upgraded

oHiring more people 
causes more work done

oThis is not always true

oCosts are more 
concentrated on products

o Costs are more 
concentrated on design
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Hardware does “wear out”

Failure curve of hardware—”bathtub curve” 12N. Meng, B. Ryder



Software does “deteriorate”

Failure curve of software
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Component based vs. Custom built

• Hardware products employ many 
standardized design components.

• Most software is always custom built.
• The software industry does seem to be 

moving (slowly) toward component-based 
construction.
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Software Crisis?
• Projects running over-budget
• Projects running over-time
• Software was very inefficient
• Software was of low quality
• Software often did not meet requirements
• Projects were unmanageable and code is  

difficult to maintain
• Software was never delivered
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What is software engineering?
Pressman’s book

A discipline that encompasses
• process of software development
• methods for software analysis, design, 

construction, testing, and maintenance
• tools that support the process and the 

methods
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Process, Methods, Tools
• Various tasks required to build and 

maintain software
– e.g. design, testing, etc.

• SE process: the organization and 
management of these tasks
– various process models

• SE methods: ways to perform the tasks
• SE tools: assist in perform the tasks
– UML tools, IDEs, issue tracking tools
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Importance of Historical 
Perspective

• Santayana half-truth:
– “Those who cannot remember the past are 

condemned to repeat it”
• Don’t remember failures?
– Likely to repeat them

• Don’t remember successes?
– Unlikely to repeat them
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History of SW Development



1950’s: engineer software like hardware

• Hardware-oriented software applications
– Airplanes, circuits

• Economics: computer time more valuable 
than people time
– Boehm supervisor, 1955: “We’re paying 

$600/hour for that computer, and $2/hour 
for you, and I want you to act accordingly.” 
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1960’s: software is NOT LIKE hardware

• Properties
– Invisible, complex, has to be executed by 

computers, hard to change, doesn’t wear 
out, unconstrained by physical laws of 
nature

• Demand for programmers exceeded 
supply
– Cowboy programmers as heroes
– Computer Science Department formed
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• Code-and-fix process
• Better infrastructures
– OS, compilers, utilities

• Some large successes
– Apollo, ESS

• Failure of most large systems
– Unmaintainable spaghetti code
– Unreliable, undiagnosable systems
– Code-and-fix process is too expensive
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1970’s Formal and Waterfall Approaches

• Structured programming, eliminate goto
• Formal methods
• Specification, development, verification
• Problems

– Successful for small, critical programs
– Proofs show presence of defects, not absence
– Scalability of programmer community

• Waterfall process model
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Large-Organization HW/SW Cost Trends 
(1973)

Cf Barry Boehm, ICSE06 Keynote 
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1980’s Synthesis: Productivity, Reuse, 
Objects

• Major SW productivity enhancers
–Working faster: tools and environments
–Working smarter: processes and methods
–Work avoidance: reuse, simplicity, objects
– Technology silver bullets: AI, Do what I 

mean, programming by example
• Reuse libraries
• Object orientation 
– Smalltalk, Eiffel, C++
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1990’s maturity models and agile methods

• Capacity Maturity Models (CMM)
– Reliance on explicit documented knowledge
– Heavyweight but verifiable, scalable

• Agile Methods
– Reliance on interpersonal tacit knowledge
– Lightweight, adaptable, not very scalable

• Other trends
– reverse engineering, Open Source SW, 

Spiral process model
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2000’s Synthesis

• Model-driven development 
• Risk-driven model
• Service-oriented architecture
• Hybrid agile/plan-driven product and 

process architectures
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Existing SW Problems
• Software is too expensive
• Software takes too long to build
• Software quality is low
• Software is too complex to support and 

maintain
• Software does not age gracefully
• Not enough highly-qualified people to 

design and build software
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Data by the Standish Group (1995)
• $81B on canceled software projects
• $59B for budget overruns
• Only 1/6 projects were completed on time and 

within budget
• Nearly 1/3 projects were canceled
• Over half projects were considered 

“challenged”
• Among canceled and challenged projects
– Budget overrun: 189% of original estimate
– Time overrun: 222% of original estimate
– Only 61% of the originally specified features
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Software Myths



Management Myths
• “If we get behind schedule, we can just 

add more people and catch up”
• Fact: Adding people to a late project 

makes it even later 
– The people working now must spend time 

educating the newcomers
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Customer Myths
• “A general statement of objectives is 

enough to start programming”

• Fact: An ambiguous statement of 
objectives leads to project failures
– Unambiguous requirements need 

effective and continuous communication 
between customer and developer
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Customer Myths
• “Changes in requirements are easy to 

deal with because software is flexible”
• Fact: Changes are hard and expensive
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Practitioner’s Myths
• “Once we get the program running, we 

are done”
• Fact: 60-80% effort comes after the 

software is delivered for the first time
– Bug fixes, feature enhancements, software 

reengineering, migration 
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Practitioner’s Myths
• “Until I get the program running, I 

cannot assess quality”
• Fact: Software reviews can be applied once 

code is written and are very effective; 
pair programming techniques as well
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Practitioner’s Myths
• “The only deliverable work product is the 

running program”
• Fact: Need the entire configuration
– Documentation of system requirements, 

design, programming, and usage
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Practitioner’s Myths
• “SE will slow us down by requiring 

unnecessary documentation”
• Fact: SE is about creating quality
• Better quality -> reduced rework 

-> faster delivery time
• Brooks recommends time division of: 

1/3 planning; 1/6 coding; 1/4 
component test and early system 
test; 1/4 system test 
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Learning Objectives
• Knowledge of basic concepts in software 

engineering
• Ability to do Object-oriented 

requirement analysis 
• Ability to do Object-oriented design
• Ability to build and test software
• Good command of UML and Patterns
• Understanding importance of teamwork
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Software Engineering
• Software is complex, expensive, late, 

low-quality, hard to maintain 
• Goal: approach these problems using 

software engineering 
• Key message: the field is very young –

The term “SE” was introduced in 1968 
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