
Floating Point Representation and Arithmetic

1. Machine representation of floating point numbers.

• If x ∈ < then x ≈ fl(x) = (mantissa)(base)(exponent).
• Example: IEEE 32 bit standard (see Section 2.2).

– 8 bit exponent (base is two)
– 23 bit normalized mantissa. Leading one is implicit.
– “Machine epsilon” ε = 2−23. This is a parameter that quantifies the relative pre-

cision of a particular floating point system. Note that ε is the smallest positive
number such that fl(1 + ε) > 1.

2. Round-off error: occurs whenever a number cannot be exactly represented in the available
number of bits.

3. Round-off error in representing a number:∣∣∣∣x− fl(x)
x

∣∣∣∣ ≤ 1
2
ε or fl(x) = x(1 + δ), for some |δ| ≤ 1

2
ε.

This says that the relative error in simply representing a real number in floating point can
be as much as ε (or, more precisely, 1

2ε). Here are a couple of implications of this fact:

• With IEEE 32 bit floating point (ε = 2−23 ≈ 10−7) you can never expect to have more
than about 6 decimal digits of accuracy in any calculation.
• When comparing two numbers x and y, one should assume they are equal if

|x− y| < εmax{|x|, |y|}.

Why? Because two numbers that differ by less than this value could not be distinguished
once they are represented in floating point.)

4. Propagation of round-off errors:

• Multiplication—relatively safe:

fl(x) · fl(y) = x(1 + δx) · y(1 + δy)
= xy(1 + δx + δy + δxδy)

• Addition—problems if x+ y is small but x and y large:

fl(x) + fl(y) = x(1 + δx) + y(1 + δy)

= (x+ y)(1 +
x

x+ y
δx +

y

x+ y
δy)

• An example of “catastrophic cancellation” error. Suppose we can store only 4 decimal
digits in our machine.

True Computed Signif. Digs.
1.2376 1.238 4
−1.2361 −1.236 4

0.0015 0.002 1

Note: 0.002 = 0.0015(1 + 0.33), i.e,. we have a 33% error in our answer.

