Table-Driven Parsing

« Tt is possible to build a non-recursive
predictive parser by maintaining a stack
explicitly, rather than implicitly via
recursive calls [1]

 The non-recursive parser looks up the
production to be applied in a parsing
table.

 The table can be constructed directly
from LL(1) grammars

. INPUT [Ja]+
Table-Driven

Parsing smc Prdicive Fing | ourpur
.
An input buffer gl |

— Contains the input string

— The string can be followed by $, an end marker to
indicate the end of the string

A stack

— Contains symbols with $ on the bottom, with the
start symbol initially on the top

A parsing table (2-dimensional array M[A, a])

An output stream (production rules applied for
derivation)

9/13/16

Input: a string w, a parsing table M for grammar G
Output: if wis in L(G), a leftmost derivation of w; otherwise, an error
indication
Method:

set ip to point to the first symbol of w$
repeat

let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $, then
if X =athen
pop X from the stack and advance ip
else error()

else /* X is a non-terminal */
if M[X, a] = X->Y,Y,..Y,, then
pop X from the stack

push Yy, .., ¥,, Y on to the stack
output the production X->Y,Y,..Y,
end
else error()
until X=$

An Example

* Input String: id +id * id
* Input parsing table for the following

gr‘ammar'
E -> TE' /@/TT INPUT SYMBOL (:
FRMINA d T N

E->+TE | e — 1350 —

T->FT - . e e
* T T - FT' T FT'

T -> F-r' .| 8 T, T! Se TI _>*FTI L T, e

F->(E)|id N e

9/13/16

9/13/16

NON - INPUT SYMBOL
TERMINAL id + * () $
" B E—TE E—TE
LL Parsing ~ * g .
T T FT' T = FT'
T T e |T' —-+FT' | ¢ T 56T —e
F F—id F - (E)
Stack Input Output
$E id +id * id$
$E'T id+id*id$| E-> TE

$E'TF id+id*id$| T->FT
$E'Tid id+id*id$| F-id
$ET +id * id$

5 5 Eoe

Construction of Parsing Table

« Two functions used to fill in a predicative
parsing table for 6
— FIRST

* For non-terminal A, FIRST(A) is the set of
terminals that begin the strings derived from A

— FOLLOW

* For non-terminal A, FOLLOW(A) is the set of
terminals that appear immediately to the right of A.

If A can be the rightmost symbol, $ can be included
in FOLLOW(A)

9/13/16

Algorithm to compute FIRST(X)

« If X is terminal, then FIRST(X) = {X}
« If X -> € is a production, then e FIRST(X)

« If X is non-terminal, and X -> ¥,¥,..Y, then
place a in FIRST(X), if for some i, ais in
FIRST(Y)), and € is in all of FIRST(Y1), ...,
FIRST(Y,). Place € in FIRST(X) if for all i,
FIRST(X;) contains €

E->TE

PH E ->+TE | ¢
Revisit the example T ET
T->*FT | ¢
F->()|id
FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E)={+, €}
FIRST(T)={*, €}

9/13/16

Algorithm to compute FOLLOW(X)

* Place $ in FOLLOW(S)

* If there is a production A -> aBp, then
{FIRST(B) - €} FOLLOW(B)

* If there is a production A -> &B, or a
production A -> BB, where FIRST(B)
contains €, then FOLLOW(A) C

FOLLOW(B)
E->TE
‘o E'->+TE | ¢
Revisit the example T ET
T->*FT | ¢
F->(E)|id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E")=(+, €}

FIRST(T)={*, €}

FOLLOW(E) = FOLLOW(E) = {), $}

FOLLOW(T) = FOLLOW(T)
= FIRST(E') - € U FOLLOW(E)
={+). $}

FOLLOW(F) = FIRST(T') - € U FOLLOW(T)
={*.+.) %}

Algorithm to create a parsing table

Input: Grammar 6
Output: Parsing table M
Method:
1. for each production A -> &, do steps 2 and 3
2. for each terminal a in FIRST(«), add A -> & to
M[A, a]

3.if €isin FIRST(x), add A -> o to M[A, b] for
each terminal b in FOLLOW(A). If $ is in
FOLLOW(A), add A -> o to M[A, $]

4. make each undefined entry of M be error

11

Revisit the example

FIRST(E) = FOLLOW(E) = E->TE
FIRST(T) = FOLLOW(E) = {), $} E ->+TE | ¢
FIRST(F) = {(, id} |FoLLOW(T) = T->FT

FIRST(E)={+ ¢} |FOLLOW(T)={+) $} |L > FTle

FIRST(T)={*, €} FOLLOW(F) = {*, +,) $} F->(E)|id
Non- Input Symbol
terminal id + * () $

M| |4 |m|m

12

9/13/16

9/13/16

Bottom-up Parsing

« Construct a parse tree for an input
string beginning at the leaves, and
working up fowards the root

— E.g., reducing a string w to the start symbol

An Example

« Consider the grammar:
S ->aABe
A ->Abc | b
B->d

* Input string: abbcde
* How to build a parse tree bottom-up?

9/13/16

S->aABﬁ
. A->Abc | b
Bottom-up Parsing |zd

abbcde

 Scan the string to look for a substring
that matches the right side of some
production
— E.g., b matches A, while d matches B

* Choose the leftmost b and replace it with
A, obtaining "aAbcde”

« Now "Abc”, "b", and "d" match the right
side of some rules

* Choose the leftmost longest substring to
replace, obtaining "aAde"

S->aABﬁ
. A ->Abc | b
Bottom-up Parsing (g4

abbcde

* Replace d with B, getting "aABe"
* Replace the whole string with S

LR(1) Parsing

LR(1) Grammar
Input String: id +id * id

involved (not shown here)

There is still a parsing table

E >E+T
->T
T >T*F
> F

F ->id

A stack is also used to help parsing

17

LR Par-sing "" represents lookup
Stack Input Action
id +id * id$ shift
id . +id * id$ | Reduce by F->id
F +id * id$ | Reduce by T->F
T +id * id$ | Reduce by E->T
E +id* id$ shift
E+ id * id$ shift
E+id. * id$ Reduce by F->id
E+F * id$ Reduce by T->F
E+T * id$ shift
E+T* id$ shift
E+T*id $ Reduce by F->id
E+T*F $| Reduceby T->T*F
E+T $| Reduce by E->E+T
E $ accept m

9/13/16

Homework

Exercises 1.1, 2.4, 2.12

Hint:

—For 2.4, please refer to slides about
conversions from RE to minimized DFA

Due Date: 09/20 11:59pm

Submit the electronic copy to Canvas.

9/13/16

10

