
9/13/16	

1	

Table-Driven Parsing

•  It is possible to build a non-recursive
predictive parser by maintaining a stack
explicitly, rather than implicitly via
recursive calls [1]

•  The non-recursive parser looks up the
production to be applied in a parsing
table.

•  The table can be constructed directly
from LL(1) grammars

1	

Table-Driven
Parsing

•  An input buffer
– Contains the input string
– The string can be followed by $, an end marker to

indicate the end of the string
•  A stack
– Contains symbols with $ on the bottom, with the

start symbol initially on the top
•  A parsing table (2-dimensional array M[A, a])
•  An output stream (production rules applied for

derivation)
2	

9/13/16	

2	

Input: a string w, a parsing table M for grammar G
Output: if w is in L(G), a leftmost derivation of w; otherwise, an error
indication
Method:

 set ip to point to the first symbol of w$
 repeat
 let X be the top stack symbol and a the symbol pointed to by ip;
 if X is a terminal or $, then
 if X = a then
 pop X from the stack and advance ip
 else error()
 else /* X is a non-terminal */
 if M[X, a] = X->Y1Y2…Yk, then
 pop X from the stack
 push Yk, …, Y2, Y1 on to the stack
 output the production X->Y1Y2…Yk
 end
 else error()
 until X = $

3	

An Example

•  Input String: id + id * id
•  Input parsing table for the following

grammar
E -> TE’
E’ -> +TE’ | ε
T -> FT’
T’ -> *FT’ | ε
F -> (E) | id

4	

9/13/16	

3	

LL Parsing

Stack Input Output
$E id + id * id$

$E’T id + id * id$ E -> TE’
$E’T’F id + id * id$ T -> FT’
$E’T’id id + id * id$ F -> id
$E’T’ + id * id$

…
$ $ E’ -> ε

5	

Construction of Parsing Table
•  Two functions used to fill in a predicative

parsing table for G
– FIRST
•  For non-terminal A, FIRST(A) is the set of

terminals that begin the strings derived from A
– FOLLOW
•  For non-terminal A, FOLLOW(A) is the set of

terminals that appear immediately to the right of A.
If A can be the rightmost symbol, $ can be included
in FOLLOW(A)

6	

9/13/16	

4	

Algorithm to compute FIRST(X)

•  If X is terminal, then FIRST(X) = {X}
•  If X -> ε is a production, then ε FIRST(X)
•  If X is non-terminal, and X -> Y1Y2…Yk, then

place a in FIRST(X), if for some i, a is in
FIRST(Yi), and ε is in all of FIRST(Y1), …,
FIRST(Yi-1). Place ε in FIRST(X) if for all i,
FIRST(Xi) contains ε

7	

∈

Revisit the example

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}
FIRST(E’)={+, ε}
FIRST(T’)={*, ε}

8	

E -> TE’
E’ -> +TE’ | ε
T -> FT’
T’ -> *FT’ | ε
F -> (E) | id

9/13/16	

5	

Algorithm to compute FOLLOW(X)

•  Place $ in FOLLOW(S)
•  If there is a production A -> αBβ, then

{FIRST(β) – ε} FOLLOW(B)
•  If there is a production A -> αB, or a

production A -> αBβ, where FIRST(β)
contains ε, then FOLLOW(A)
FOLLOW(B)

9	

⊆

⊆

Revisit the example

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}
FIRST(E’)={+, ε}
FIRST(T’)={*, ε}

10	

E -> TE’
E’ -> +TE’ | ε
T -> FT’
T’ -> *FT’ | ε
F -> (E) | id

FOLLOW(E) = FOLLOW(E’) = {), $}
FOLLOW(T) = FOLLOW(T’)

 = FIRST(E’) - ε U FOLLOW(E’)
 = {+,), $}
FOLLOW(F) = FIRST(T’) - ε U FOLLOW(T’)

 = {*, +,) $}

9/13/16	

6	

Algorithm to create a parsing table
Input: Grammar G
Output: Parsing table M
Method:

 1. for each production A -> α, do steps 2 and 3
 2. for each terminal a in FIRST(α), add A -> α to

M[A, a]
 3. if ε is in FIRST(α), add A -> α to M[A, b] for

each terminal b in FOLLOW(A). If $ is in
FOLLOW(A), add A -> α to M[A, $]

 4. make each undefined entry of M be error
11	

Revisit the example

12	

FIRST(E) =
FIRST(T) =
FIRST(F) = {(, id}
FIRST(E’)={+, ε}
FIRST(T’)={*, ε}

FOLLOW(E) =
FOLLOW(E’) = {), $}
FOLLOW(T) =
FOLLOW(T’) = {+,), $}
FOLLOW(F) = {*, +,) $}

Non-
terminal

Input Symbol
id + * () $

E
E’
T
T’
F

E -> TE’
E’ -> +TE’ | ε
T -> FT’
T’ -> *FT’ | ε
F -> (E) | id

9/13/16	

7	

Bottom-up Parsing

•  Construct a parse tree for an input
string beginning at the leaves, and
working up towards the root
– E.g., reducing a string w to the start symbol

13	

An Example

•  Consider the grammar:
 S -> aABe
 A -> Abc | b
 B -> d

•  Input string: abbcde
•  How to build a parse tree bottom-up?

14	

9/13/16	

8	

Bottom-up Parsing

•  Scan the string to look for a substring
that matches the right side of some
production
– E.g., b matches A, while d matches B

•  Choose the leftmost b and replace it with
A, obtaining “aAbcde”

•  Now “Abc”, “b”, and “d” match the right
side of some rules

•  Choose the leftmost longest substring to
replace, obtaining “aAde”

15	

S -> aABe
A -> Abc | b
B -> d

abbcde

Bottom-up Parsing

•  Replace d with B, getting “aABe”
•  Replace the whole string with S

16	

S -> aABe
A -> Abc | b
B -> d

abbcde

9/13/16	

9	

LR(1) Parsing

•  LR(1) Grammar
•  Input String: id + id * id
•  There is still a parsing table

involved (not shown here)
•  A stack is also used to help parsing

17	

E -> E + T
 -> T
T -> T * F

 -> F
F -> id

LR Parsing

18	

Stack Input Action
id + id * id$ shift

id . + id * id$ Reduce by F->id
F + id * id$ Reduce by T->F
T + id * id$ Reduce by E->T
E + id * id$ shift

E + id * id$ shift
E + id . * id$ Reduce by F->id
E + F * id$ Reduce by T->F
E + T * id$ shift

E + T * id$ shift
E + T * id $ Reduce by F->id
E + T * F $ Reduce by T->T*F

E + T $ Reduce by E->E+T
E $ accept

“.” represents lookup

9/13/16	

10	

Homework

•  Exercises 1.1, 2.4, 2.12
•  Hint:
– For 2.4, please refer to slides about

conversions from RE to minimized DFA
•  Due Date: 09/20 11:59pm
•  Submit the electronic copy to Canvas.

19	

