
Models for Implementing Servers

Godmar Back

Virginia Tech

August 9, 2020

Godmar Back Server Models 1/14 1 / 14

Architecture of Internet Applications

Load
Balancer

Load
Balancer

Internet

Web Servers

HTTP Requests
Dispatch

Web Layer Service Layer

Internal
Protocols

Client Layer

Back-end Servers
HTML, CSS, Javascript,

Bootstrap, JQuery,
Angular, Reactjs …

Tomcat, Apache, PHP,
JSP, Ruby on Rails …

MySql, ActiveMQ,
Memcached, Redis …

HTML, JSON,
javascript…

Web Browser

Web Browser

Motivation: modern cloud services need to serve large numbers of clients with
finite resources

The applications are often multi-tiered

Godmar Back Server Models 2/14 2 / 14

Iterative Server

An iterative server accepts one client at a time, serves this client, repeats

Advantage:
Simple
Requires little support from OS, suitable for embedded devices

Drawbacks:
While this client is being served, other clients have to wait, even while the server itself is
blocked waiting for data from another tier
Can use only a single CPU
Results in high latency for clients and low resource utilization

Godmar Back Server Models 3/14 3 / 14

High Concurrency Servers

High-concurrency servers handle
multiple clients concurrently

Each client may be in a different stage of
the sequence necessary to process their
request
Clients may be short or long lived.

Goal is to increase performance with
offered load, reach peak, and degrade
gracefully under overload

Two basic models:
using a separate execution context for
each client (threads or processes)
using an event-based approach to
multiplex multiple connections within a
single execution context (and then use
one such context per CPU)

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rf

o
rm

a
n
ce

Figure 1: Source: von Behren [2]

Godmar Back Server Models 4/14 4 / 14

http://capriccio.cs.berkeley.edu/publications.html

Using Multiple Execution Contexts

May use threads or processes

Requires policy for managing
concurrency

Different arrangements differ
with respect to robustness
and scalability

Underlying system maintains
execution contexts and
exploits process state
transitions

e.g., read(2) puts only the
calling thread/process into the
BLOCKED state

A B

C D

C/D:
fixed #

A/B:
grows &
shrinks

Figure 2: Prefork vs. On-Demand Models

Godmar Back Server Models 5/14 5 / 14

Thread/Process-Based Model

Pros:

Programmer’s perspective: Linear control flow, using functions that block when
I/O is not ready

Unix file descriptor model well suited for sharing between processes and/or
threads

Multiprocess model exploits process isolation for robustness

Cons:

Potential for concurrency-related bugs, particularly under fully preemptive
scheduling regime

dependent on the amount of data shared between threads

Potential overhead related to state transitions (mode switch, context switch,
scheduler)

Concurrency level can be difficult to tune

Q: how can the state transition overhead be avoided/reduced?
Godmar Back Server Models 6/14 6 / 14

Event-Based Model

Idea
Reorganize the necessary computation so that the application, not the OS scheduler,
decides what work is to be next, guided by information from the OS about which
clients have I/O data pending. Thus, gain performance by avoiding the overhead of
state transitions (READY to BLOCKED, BLOCKED to READY, reschedule from
READY to RUNNING). Also gain the opportunity to optimize the application based
on knowledge of the stages of request processing.

Questions:
How to avoid blocking?
How to manage a task’s progress to completion?

Historical Aside
Both models perform the same work and are equivalent, which has been known since
1978 [1]. But they can perform differently.

Godmar Back Server Models 7/14 7 / 14

Programming Model Comparison

Event-based Model
struct conn_state {

request req;

response res;

};

void handle_event(int event, conn_state *s) {

switch (event) {

case REQUEST_ARRIVED:

read_request_from_client(&s->req);

process_request(&s->req);

send_req_to_database(&s->req);

return;

case DB_REQUEST_COMPLETED:

get_db_response(&s->res);

transform_response(&s->res);

send_response(&s->res);

return;

}

}

// event loop:

while (true) {

// identify pending events

// handle pending events

}

Thread-based Model
void handle_request() {

request req;

read_request_from_client(&req);

process_request(&req);

response res;

contact_database(&req, &res);

transform_response(&res);

send_response(&res);

}

Godmar Back Server Models 8/14 8 / 14

Writing Event-Based Code

Basic idea: identify blocking points and introduce a state machine to transition
at each point. Event handler must not block

Add an event loop that identifies pending events and calls appropriate handlers.

Maintain actual client state explicitly – as opposed to using local (on the stack)
variables, hence the term “stack ripping”

This is generally complex. Actual events - in a standard http server - are as
fine-grained as receiving a group of bytes from a network.

Consequence: program must maintain a state machine for http parsing that can advance
with an arbitrary non-zero number of bytes

GET /api/login HTTP/1.1\r\n

Host: localhost:9999\r\n

User-Agent: curl/7.61.1\r\n

Accept: */*\r\n

\r\n

E.g. nginx http parser

Godmar Back Server Models 9/14 9 / 14

http://lxr.nginx.org/source/src/http/ngx_http_parse.c

Performing Asynchronous I/O

The event-based model requires that the event loop efficiently learns when new
events become available; for network servers, this corresponds to

New connection attempts
New data received on established connections
Connections being closed

This requires I/O multiplexing system calls that efficiently inform the program
which file descriptors have data pending:

readable: data has been received and buffered, EOF, or new client is pending for accepting
sockets
writable: possible to write to a TCP connection without blocking due to flow control

May be combined with non-blocking mode [Klitzke’17]:
Calls such as read(2) return EWOULDBLOCK if calls were to block

Godmar Back Server Models 10/14 10 / 14

https://eklitzke.org/blocking-io-nonblocking-io-and-epoll

Multiplexing I/O Interfaces

OS provide I/O multiplexing interfaces that allow a process to learn about
multiple file descriptors at once

Traditional Unix: select(2), poll(2)
Linux: epoll(7)
BSD kqueue
Windows: I/O completion ports

Efficiency & Complexity
Efficient: (algorithmic) complexity proportional to number of file descriptors that provide
events
Can be tricky to use, particularly when combined with multi-threading and non-blocking file
descriptors

Libraries such as libevents or libuv provide an abstraction layer on top of these
low-level facilities

Godmar Back Server Models 11/14 11 / 14

https://libevent.org/
https://en.wikipedia.org/wiki/Libuv

Emerging async I/O facilities in High-Level Languages

High-level languages (e.g. ES6 JavaScript, Python 3, C++20) provide
async/await constructs that allow a programmer to write what looks like
thread-based code, but which is executed under an event-based model

Often integrated into the interpreter/virtual machine/runtime system of these
languages

Programmer still required to use async/await for any “blocking” function
May be implemented under the hood using blocking helper threads that provide higher-level
events to the event queue

Can potentially avoid the low-level race conditions that may occur under a
preemptive, multi-threaded regime

Potential for concurrency-related bugs such as ordering violations remains

Godmar Back Server Models 12/14 12 / 14

Conclusion

The existing multi-threading and multi-process facilities are well-suited to writing
concurrent servers

However, for high-performance, high-concurrent servers, an alternative
event-based model may lead to higher throughput. Paid for with a more complex
programming model

Direct support for asynchronous I/O in the language may reduce this cost

Godmar Back Server Models 13/14 13 / 14

References

[1] Hugh C. Lauer and Roger M. Needham.
On the duality of operating system structures.
SIGOPS Oper. Syst. Rev., 13(2):3–19, April 1979.

[2] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
Capriccio: Scalable threads for internet services.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, page 268–281, New York, NY, USA, 2003. Association for
Computing Machinery.

Godmar Back Server Models 14/14 14 / 14

