
Processes (Part III)

Godmar Back

Virginia Tech

May 31, 2020

Godmar Back Processes Part III 1/7 1 / 7



Process Management

OS provide APIs (system calls) to manage processes

Process creation
includes way to set up new process’s environment

Process termination
Normal termination (exit(), return from main())
Abnormal termination (due to misbehavior: “crash”, due to outside intervention: “kill”)
In either case, OS cleans up (reclaims all memory, closes all low-level file descriptors)

Process interaction; examples include
Waiting for a process to finish
Stopping/continuing a process

Change a process’s scheduling and other attributes

Reporting and profiling facilities

OS provides facilities to be used by or in coordination with control programs
(shell, GUI, Task Manager)

Examples include Ctrl-C, Ctrl-Z

Godmar Back Processes Part III 2/7 2 / 7



Process Management (Windows)

OS provide APIs (system calls) to manage processes

Example: CreateProcessA W in Windows
BOOL CreateProcessA(

LPCSTR lpApplicationName,

LPSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCSTR lpCurrentDirectory,

LPSTARTUPINFOA lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation

);

Creates (“spawns”) a new process, and instruct it to run a new
program with arguments and attributes

Godmar Back Processes Part III 3/7 3 / 7

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa


Process Management (Unix)

Unix separates process creation from loading a new program

The fork() system call creates a new process, but does not load a new program

The newly created process is called a child process (the creating process is
referred to as parent)

Corollary: Unix processes form a tree-like hierarchy
Child processes may inherit parts of their environment from their parents, but are otherwise
distinct entities

The child process then may change/set up the environment and, when ready,
load a new program that replaces the current program but retains certain
aspects of the environment (exec())

The parent has the option of waiting (via wait()) for the child process to
terminate, which is also called “joining” the child process

Parent can also learn how the child process terminated, e.g. the code that the child passed
to exit()

Godmar Back Processes Part III 4/7 4 / 7



Comparison of fork() and exec()

fork()

Keeps program and process, but also creates a new process
New process is a clone of the parent; child state is a (now separate) copy of parent’s state,
including everything: heap, stack, file descriptors
Called once, returns twice (once in parent, once in child)

exec()

Keeps process, but discards old program and loads a new program
Reinitializes process state (clears heap + stack, starts at new program’s main()); except it
retains file descriptors
If successful, is called once but does not return
includes multiple variants (execvp(), etc.)

Godmar Back Processes Part III 5/7 5 / 7



fork/exec/exit/wait

Figure 1: Parent/child control flows in typical scenario where a child process is forked with the
intent of executing a program

Godmar Back Processes Part III 6/7 6 / 7



Some Unix Jargon for various scenarios

Zombies
Processes that have exited, but whose parent is still alive and has not (yet) waited
for them. They will exist until either their parent waits for them (“reaps them”) or
their parent exits.

Orphans & Daemons
Processes that are alive, but whose parent exited without waiting for them. They are
reassigned to the init process (pid 1). Usually unintended. If intended, the orphan
may also be called a daemon.

Run-Aways

Processes that are alive, have not exited, are always READY/RUNNING and thus, if
scheduled, use up 100% of a CPU without performing useful work.

Godmar Back Processes Part III 7/7 7 / 7


