
CS 3214
Operating Systems

Godmar Back

Virtualization

Definitions for “virtual machine”
• Term is somewhat ill-defined, generally

– A machine that’s implemented in software, rather than
hardware

– A self-contained environment that acts like a computer
– An abstract specification for a computing device (instruction

set, etc.)
• Common distinction:

– (language-based) virtual machines
• Instruction set usually does not resemble any existing architecture
• Java VM, .Net CLR, many others

– virtual machine monitors (VMM)
• instruction set fully or partially taken from a real architecture

Example Java Bytecode

• Not the kind of VM this discussion is about!

Compiled from "h.java"
public class h {
 public h();
 Code:
 0: aload_0
 1: invokespecial #8 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: getstatic #13 // Field java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #19 // String Hello, World
 5: invokevirtual #21 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
}

public class h
{
 public static void main(String []av) {
 System.out.println("Hello, World");
 }
}

Use of Virtual Machines
• Test applications
• Program / debug OS; fault injection
• Bundle applications + OS (“Virtual

appliances”)
• Monitor for intrusions
• Resource sharing/hosting `cloud computing’
• Migration
• Replication
• Simulate networks

History of virtual machines

• See Goldberg
[1972], [1974]

http://www.cse.psu.edu/~bhuvan/teaching/spring06/papers/goldberg.pdf
http://cseweb.ucsd.edu/classes/wi08/cse221/papers/goldberg74.pdf

Popek/Goldberg Requirements

• (1974)
– Equivalence/Fidelity

• Program should exhibit same behavior
– Resource control

• VMM must have full control of resources
– Efficiency

• Most instructions should execute natively

History (cont’d)

• “Disco” project at Stanford [Bugnion 1997]
– Created hypervisor to run commodity OS on

new “Flash” multiprocessor hardware
– Based on MIPS

• VMWare was spun off, created VMWare
Workstation – first hypervisor for x86

• 2000’s
– Resurgence under Cloud moniker

http://dl.acm.org/citation.cfm?id=265930

Virtualizing the CPU
• Basic mode: direct execution
• Requires Deprivileging

– (Code designed to run in supervisor mode will be run
in user mode)

• Hardware vs. Software Virtualization
– Hardware: “trap-and-emulate”

• Not possible on x86 prior to introduction of Intel/VT &
AMD/Pacifica

• See [Robin 2000]
– Software:

• Either require cooperation of guests to not rely on traps for
safe deprivileging

• Or binary translation to avoid running unmodified guest OS
code (note: guest user code is always safe to run!)

http://dl.acm.org/citation.cfm?id=1251316

Types of Virtual Machines

• Type I • Type II

VMM Classification

Guest OS sees
true hardware
interface

Guest OS sees
(almost) hardware
interface, has some
awareness of
virtualization

Guest OS sees
virtualized
hardware
interface

Hypervisor runs
directly on host
hardware

VMware ESX
MS Virtual Server

Xen
Windows 7
(HyperV), KVM

Hypervisor runs
on host OS

qemu, VMware
Workstation,
VMware GSX,
VirtualBox

UML

Type I

Type II

Unmodified Guest Ported Guest

Paravirtualized
guest drivers

Kernel Support
for VMM: skas3, UMLinux,

vmware.ko, KVM

Binary translation vs trap-and-emulate
• Interesting history:

– IBM/360 (70’s) used trap-and-emulate
– Late 90’s: x86 requires binary translation
– Early 00’s: x86 adds hardware for complete trap-and-emulate (*)
– Late 00’s: predominantly hardware-based virtualization + guest

accommodation
• (*) Adams [ASPLOS 2006] asked:

– Is binary translation always slower than trap-and-emulate?
• Surprising result: binary translation beat trap-and-emulate.

Why?
– Binary translation is highly optimized:

• most instructions are translated as IDENT (identical), preserving most compiler
optimizations and only slightly increasing code size

• binary translation can be adaptive: if you know an instruction is going to trap,
inline part of all of trap handler. Way cheaper than actually trapping.

– This trade-off is changing as hardware support gets better,
e.g., microcode assist

• See also [PLDI 2012 Agesen]

http://pldi12.cs.purdue.edu/sites/default/files/slides_pldi12-oagesen.pdf

Virtualizing Memory: MMU
• Guest OS programs page table mapping virtual

→ physical
– Hypervisor must map guest’s “physical” to machine

addresses
• Approaches:

– Shadow page tables (ESX): hypervisor makes a
copy of page table, installs copy in MMU

– Paravirtualization: ask cooperation of guest to
create suitable virtual → hardware page tables
(Xen)

– Hardware assisted: nested page tables: let
hardware perform additional translation step

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software

done in software
 or hardwaremachine-dependent

machine-independent
logic

Shadow Page Tables vs. Paravirtualization
vs. Nested Page Tables

• Paravirtualized MMU

• Nested Page tables
eliminate need for
either

• Shadow Page Table

Virtual Physical Hardware

Primary

Shadow

Memory Management in ESX
• Have so far discussed how VMM achieves isolation

– By ensuring proper translation
• But VMM must also make resource management

decisions:
– Which guest gets to use which memory, and for how long

• Challenges:
– OS generally not (yet) designed to have (physical memory) taken

out/put in.
– Assume (more or less contiguous) physical memory starting at 0
– Assume they can always use all physical memory at no cost (for

file caching, etc.)
– Unaware that they may share actual machine with other guests
– Already perform page replacement for their processes based on

these assumptions

Goals for Virtual Memory
• Performance

– Is key. Recall that
• avg access = hit rate * hit latency + miss rate * miss penalty
• Miss penalty is huge for virtual memory

• Overcommiting
– Want to announce more physical memory to guests

that is present, in sum
– Needs a page replacement policy

• Sharing
– If guests are running the same code/OS, or process

the same data, keep one copy and use copy-on-write

Page Replacement
• Must be able to swap guest pages to disk

– Question is: which one?
– VMM has little knowledge about what’s going on

inside guest. For instance, it doesn’t know about
guest’s internal LRU lists (e.g., Linux page cache)

• Potential problem: Double Paging
– VMM swaps page out (maybe based on hardware

access bit)
– Guest (observing the same fact) – also wants to

“swap it out” – then VMM must bring in the page from
disk just so guest can write it out

• Need a better solution

Ballooning
• What if we could trick guest into reducing its memory

footprint?
• Download balloon driver into guest kernel

– Balloon driver allocates pages, possibly triggering guest’s
replacement policies.

– Balloon driver pins page (as far as guest is concerned) and
(secretly to guest) tells VMM that it can use that memory for
other guests

– Deflating the balloon increases guest’s free page pool
• Relies on existing memory in-kernel allocators (e.g.,

Linux’s get_free_page()
• If not enough memory is freed up by ballooning, do

random page replacement

Ballooning

Source: VMware

http://pubs.vmware.com/vi301/resmgmt/wwhelp/wwhimpl/common/html/wwhelp.htm?context=resmgmt&file=vc_advanced_mgmt.11.24.html

Page Sharing (1)

Source: Waldspurger ‘02

Page Sharing (2)

Source: Waldspurger ‘02

Virtualizing I/O

• Most challenging of the three
– Consider Gigabit networking, 3D graphics

devices
• Modern device drivers are tightly

interwoven with memory & CPU
management
– E.g. direct-mapped I/O, DMA
– Interrupt scheduling

Virtualizing I/O
• Xen • ESX

Source: VMware white paper on virtualization considerations.

http://www.vmware.com/pdf/virtualization_considerations.pdf

Windows Hyper V

Source: Wikipedia Commons

http://en.wikipedia.org/wiki/Hyper-V

IOMMU & Self-Virtualizing HW

• IOMMU – hardware support to protect
DMA, interrupts space

• Self-Virtualizing – device is aware of
existence of multiple VMs above it

Container-Based Virtualization
• Provide OS-level virtualization [Soltesz 2007]
• Three levels of isolation:

– Namespace separation (Security Isolation)
– Resource Isolation
– Fault Isolation

• Examples
– chroot, “jails”
– Solaris

Containers
– Linux “LXC”

• Commercially
available
as Docker

Source: Soltesz et al, Eurosys 2007

http://dl.acm.org/citation.cfm?id=1273025
https://www.docker.com/
http://dl.acm.org/citation.cfm?id=1273025

Virtualization Spectrum

Threads Processes Containers Virtual
Machines

Physical
Machines

Stronger Isolation, Protection and Control

Ease of Sharing, Lower Overhead

Summary
• Virtualization enables a variety of

arrangements/benefits in organizing computer
systems

• Two types:
– Type I: VMM may run on bare hardware
– Type II: VMM is process running on/integrated with

host OS
• Key challenges include virtualization of

– CPU
– Memory
– I/O

• Both correctness and efficiency are important

