CS 3214
Operating Systems

Virtualization

Godmar Back

Definitions for “virtual machine”

* Term is somewhat ill-defined, generally

— A machine that’s implemented in software, rather than
hardware

— A self-contained environment that acts like a computer
— An abstract specification for a computing device (instruction
set, etc.)
« Common distinction:

— (language-based) virtual machines

* Instruction set usually does not resemble any existing architecture
« Java VM, .Net CLR, many others

— virtual machine monitors (VMM)
* instruction set fully or partially taken from a real architecture

Example Java Bytecode

public class h
)) {
Compiled from "h.java" public static void main(String [Jav) {

public class h { System.out.printin("Hello, World");
public h(); }

Code: }
0: aload 0
1: invokespecial #8 I/l Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.String[]);
Code:
0: getstatic #13 // Field java/lang/System.out:Ljava/io/PrintStream;
3:1ldc #19 // String Hello, World

5: invokevirtual #21 I/l Method javal/io/PrintStream.printin:(Ljava/lang/String;)V
8: return

. N_o’g t_he kind of VM this discussion is about!

Use of Virtual Machines

* Test applications
* Program / debug OS; fault injection

* Bundle applications + OS ("Virtual
appliances”)

* Monitor for intrusions

* Resource sharing/hosting cloud computing’
* Migration

* Replication

« Simulate networks

History of virtual machines

“*Virtual machines have finally arrived.
Dismissed for a number of years as
merely academic curiosities, they are
now scen as cost-effective techniques
for organizing computer systems
resources to provide extraordinary
system flexibility and support for certain
unique applications.”’

Some of these advantages include support of the following

ivities concurrently with production uses of the system:
e¢ Improving and testing the operating system software

1

o running hardware diagnostic check-out software

» running different operating systems or versions of

an operating system™’

* See Goldberg
[1972], [1974]

—ve

e running with a virtual configuration which is
different from the real system, e.g., more memory

or processors, different I/0 devices5

6,7
e measuring operating systems

¢ adding hardware enhancements to a configuration
without requiring a recoding of the existing

operating system(s)3

http://www.cse.psu.edu/~bhuvan/teaching/spring06/papers/goldberg.pdf
http://cseweb.ucsd.edu/classes/wi08/cse221/papers/goldberg74.pdf

Popek/Goldberg Requirements

. (1974)
— Equivalence/Fidelity

* Program should exhibit same behavior

— Resource control

* VMM must have full control of resources
— Efficiency

* Most instructions should execute natively

History (cont'd)

* “Disco” project at Stanford [Bugnion 1997]

— Created hypervisor to run commodity OS on
new “Flash” multiprocessor hardware

— Based on MIPS

 VMWare was spun off, created VMWare
Workstation — first hypervisor for x86

« 2000’s

— Resurgence under Cloud moniker

http://dl.acm.org/citation.cfm?id=265930

Virtualizing the CPU

 Basic mode: direct execution
* Requires Deprivileging

— (Code designed to run in supervisor mode will be run
In user mode)

« Hardware vs. Software Virtualization

— Hardware: “trap-and-emulate”

* Not possible on x86 prior to introduction of Intel/VT &
AMD/Pacifica

. See [Robin 2000]

— Software:

* Either require cooperation of guests to not rely on traps for
safe deprivileging

* Or binary translation to avoid running unmodified guest OS
code (note: guest user code is always safe to run!%

http://dl.acm.org/citation.cfm?id=1251316

Types of Virtual Machines

guest guest guest
application application application

guest guest guest
application application application

guest operating system

guest operating system

virtual-machine monitor (VMM)

virtual-machine monitor (VMM)

host hardware

host operating system

* Type |

m Tech

host hardware

* Type Il

VMM Classification

Unmodified Guest

Paravirtualized
guest drivers

>

<

Guest OS sees

Guest OS sees

Guest OS sees

!

true hardware (almost) hardware | virtualized
interface interface, has some | hardware
awareness of interface
virtualization
Hypervisor runs VMware ESX Xen
directly on host MS Virtual Server | Windows 7
hardware (HyperV), KVM (
Hypervisor runs gemu, VMware UML

on host OS Workstation,
VMware GSX,
VirtualBox

Tech

Kernel Support

for VMM: skas3, UMLinux,
vmware.ko, KVM

—_——— Ported Guest

Type |

Type Il

Binary translation vs trap-and-emulate

Interesting history:

— IBM/360 (70’s) used trap-and-emulate

— Late 90’s: x86 requires binary translation

— Early 00’s: x86 adds hardware for complete trap-and-emulate (*)

— Late 00’s: predominantly hardware-based virtualization + guest
accommodation

(*) Adams [ASPLOS 2006] asked:
— Is binary translation always slower than trap-and-emulate?

. \?Vuhrpgising result: binary translation beat trap-and-emulate.
Y
— Binary translation is highly optimized:

» most instructions are translated as IDENT (identical), preserving most compiler
optimizations and only slightly increasing code size

 binary translation can be adaptive: if you know an instruction is going to trap,
inline part of all of trap handler. Way cheaper than actually trapping.

— This trade-off is cha_n?ing as hardware support gets better,
e.g., microcode assis

See also [PLDI 2012 Agesen]

http://pldi12.cs.purdue.edu/sites/default/files/slides_pldi12-oagesen.pdf

Virtualizing Memory: MMU

* Guest OS programs page table mapping virtual
— physical
— Hypervisor must map guest’s “physical” to machine
addresses
* Approaches:

— Shadow page tables (ESX): hypervisor makes a
copy of page table, installs copy in MMU

— Paravirtualization: ask cooperation of guest to
create suitable virtual — hardware page tables
(Xen)

— Hardware assisted: nested page tables: let

Address Translation & TLB

Virtual Address done in hardware
. . l done in OS software
restart instruction
- TLB Lookup done in software

machine-dependent isg hit or hardware

Page Table Walk
| Check Permissions

— TLB Reload Page Fault Exception Page Fault Exception Physical Address
“Page Not Present” “Protection Fault”

machine-independent l

logic :
\Load Page Terminate Process

Shadow Page Tables vs. Paravirtualization
vS. Nested Page Tables

« Paravirtualized MMU « Shadow Page Table

>, = L]
M 22 121 0 M 22 121 0 P
[Directory] Table [Offset | [Directory] Table [Offset | rin Iary
[

1 4-KByte Page 1 4-KByte Page

10 Page Table 3| Physical Address|

10

10

10 Page Table —l Physical Address| I

Page Directory Page Directory

Page-Table Ent >
g ry 20

Page-Table Ent >
g ry 20

Directory Entry > Directory Entry >
Peve 1024 PDE * 1024 PTE = 220 Pages Peve 1024 PDE * 1024 PTE = 220 Pages
CR3 (PDBR) CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary. *32 bits aligned onto a 4-KByte boundary.

Virtual — Physical — Hardware ——rere——— Shadow

[Drecoy| Tabe | Ofset |
* Nested Page tables

eliminate need for

either

. . ia

*32 bits aligned onto a 4-KByte boundary.

1 4-KByte Page

10 Page Table —l Physical Address| I

10

Page Directory

Page-Table Ent >
g ry 20

Memory Management in ESX

« Have so far discussed how VMM achieves isolation

By ensuring proper translation

« But VMM must also make resource management
decisions:

Which guest gets to use which memory, and for how long

« Challenges:

OS generally not (yet) designed to have (physical memory) taken
out/put in.

Assume (more or less contiguous) physical memory starting at 0

Assume they can always use all physical memory at no cost (for
file caching, etc.)

Unaware that they may share actual machine with other guests

Already perform page replacement for their processes based on
these assumptions

Goals for Virtual Memory

 Performance
— Is key. Recall that

« avg access = hit rate * hit latency + miss rate * miss penalty
« Miss penalty is huge for virtual memory

* Overcommiting

— Want to announce more physical memory to guests
that is present, in sum

— Needs a page replacement policy
» Sharing

— If guests are running the same code/OS, or process
the same data, keep one copy and use copy-on-write

Page Replacement

* Must be able to swap guest pages to disk
— Question is: which one?

— VMM has little knowledge about what's going on
iInside guest. For instance, it doesn’t know about
guest’s internal LRU lists (e.g., Linux page cache)

» Potential problem: Double Paging

— VMM swaps page out (maybe based on hardware
access bit)

— Guest (observing the same fact) — also wants to
“swap it out” — then VMM must bring in the page from
disk just so guest can write it out

 Need a better solution

Ballooning

What if we could trick guest into reducing its memory
footprint?
Download balloon driver into guest kernel

— Balloon driver allocates pages, possibly triggering guest’s
replacement policies.

— Balloon driver pins page (as far as guest is concerned) and
(secretly to guest) tells VMM that it can use that memory for
other guests

— Deflating the balloon increases guest’s free page pool
Relies on existing memory in-kernel allocators (e.g.,
Linux’s get free page()

If not enough memory is freed up by ballooning, do
random page replacement

Ballooning

guest operating
system

guest operating
system -

o[g

guest operating
system

Source: VMware

|||r I|| Tech

http://pubs.vmware.com/vi301/resmgmt/wwhelp/wwhimpl/common/html/wwhelp.htm?context=resmgmt&file=vc_advanced_mgmt.11.24.html

Page Sharing (1)

011010
110101 hash page contents » ...2bd806af
010111 -1
10110
; hint frame
mfnhéne Hash: ...06af
VM: 3 -4_
PPN: 43f8
MPN: 123b | hash
‘ |
Source: Waldspurger ‘02

o

Page Sharing (2)

‘\«) shared frame

VM 1

Machme ,
Memo Hash: ...06af | ™.,
Refs: 2 —]
MPN: 123b . .
table

Source: Waldspurger ‘02

o

Virtualizing /O

* Most challenging of the three

— Consider Gigabit networking, 3D graphics
devices

* Modern device drivers are tightly
interwoven with memory & CPU
management
— E.g. direct-mapped 1/O, DMA
— Interrupt scheduling

Virtualizing /O

e Xen e ESX

I(

| ‘ !
Application ’ Application Application

VMware Hypervisor
170 Multiplexer 1/0 Driver

Py Memory & NIC Disk | cPU Memory NIC Disk

http://www.vmware.com/pdf/virtualization_considerations.pdf

=

indows Hyper V

Child Partition

Parent Partition

VMI Provider

Virtual Machine
Management Service

Applications
VM o5 User Mode
Worker o ,
Processes Ring 3

Virtualization

Service Provider Virtualization

: Windows
Service K :
Consumer(VSC) A

Kernel Mode

Hardware

Source: Wikipedia Commons

http://en.wikipedia.org/wiki/Hyper-V

IOMMU & Self-Virtualizing HW

* |IOMMU - hardware support to protect
DMA, interrupts space

» Self-Virtualizing — device is aware of
existence of multiple VMs above it

Container-Based Virtualization

« Provide OS-level virtualization [Soltesz 2007]

 Three levels of isolation:

— Namespace separation (Security Isolation)

— Resource Isolation

A

A

~ Fault Isolation ol il e
° Exam IeS *BSD, Containers, S\lglarls 19,
P o | Windows NT | BSD Jails ioae e
— chroot, “jails” Ve
- SOIanS é Vmware GSX,
Containers v
— Linux “LXC” ™
« Commercially
ava I Ia b I e ’ : Isolation : 2]
as Docker |
Source: Soltesz et al, Eurosys 2007
Tech

http://dl.acm.org/citation.cfm?id=1273025
https://www.docker.com/
http://dl.acm.org/citation.cfm?id=1273025

Virtualization Spectrum

Threads Processes Containers Virtual
Machines
Stronger Isolation, Protection and Control
Ease of Sharing, Lower Overhead

Physical
Machines

Summary

* Virtualization enables a variety of
arrangements/benefits in organizing computer
systems

* Two types:

— Type |: VMM may run on bare hardware

— Type II: VMM is process running on/integrated with
host OS

» Key challenges include virtualization of
— CPU

— Memory
— 1/0

« Both correctness and efficiency are important

