CS 3214
Computer Systems

Virtual Memory

Godmar Back

Vltgl% Tech
(5%

Brief Review from CompOrg

« Virtual address:
— adglresses used by user programs, linkers, etc. printf(“%p\n”,
ptr);
— Range: 0...2*addresswidth
* Physical address:
— address used internally to address memory; not visible to user
— Range: 0...X where X is memory in computer
« Page: contiguous range of addresses, typical sizes are 4K
— Virtual page — contiguous range of virtual address
— Physical page (frame) — contiguous range of physical addresses

« MMU: Memory management unit that maps virtual to physical
pages based on information found in page tables

« TLB: Translation Lookaside Buffer:
— Caches such mappings

vlrgml-m-ﬁ Tech CS 3214
L

Virtual Memory

* Is not a “kind” of memory

* Is a technigue that combines one or more
of the following concepts:

— Address translation (always)
— Paging from/to disk (usually)
— Protection (usually)

« Can make storage that isn’t physical
DRAM appear as though it were

vlrgml-m-ﬁ Tech CS 3214
L

Key goals for Virtual Memory

* Virtualization
1. Maintain illusion that each process has entire
memory to itself
 Per-process address spaces

2. Allow processes access to more memory than is
really in the machine (or: sum of all memory
used by all processes > physical memory)

« Makes DRAM a cache for disk

* Protection

1. make sure there’s no way for any process to
access another process’s data unintentionally

2. protect system-internal data/kernel data

vlrgml-m-ﬁ Tech CS 3214
L

Address Translation

* Provides a way for OS to interpose on memory
accesses
* OS maintains for each process a mapping
{ virtual addresses } — { physical addresses }
IN a per-process page table
— Which virtual addresses are valid (depends on process
memory layout)
— Where they map to (depends on availability of physical

memory)
— What kind of accesses are allowed (read/write/execute)

« OS manages page tables
— Based on input/commands from user processes

— Based on resource management decisions

vng% Tech
(5%

CS 3214

Address Translation & TLB

restart instruction

page present

Page Table Walk

Virtual Address done in hardware
l done in OS software
> TLB Lookup done in software

miss or hardware

Check Permissions

else denied ok

— TLB Reload Page Fault Exception Page Fault Exception Physical Address
“Page Not Present” “Protection Fault”
Load Page Send SIGSEGV To Process
Viginia CS 3214

Tech

Switching Address Spaces

* Following slides show how virtual-to-physical
mappings change on mode switch/context
switch/mode switch sequence

— Show a bit of kernel-level implementation detail

* In multi-threaded case, context switch may or
may not involve a change in current address
space

» Costs of switching address spaces adds to
context switch cost

— Mainly opportunity cost: need to flush TLB & then
take the misses to repopulate it

V@% Toch CS 3214

FFFFFFFF £ .
o1 Process 1 Active
£0400000 INn user mode
m
O
—
C0000000_ free
O
9p) used
] access possible in user mode
O —_
Vugmla CS 3214

FFFFFFFF § -
o1 Process 1 Active
0400000 In kernel mode
m access requires kernel mode
Q)
—i
C0000000_" free
>
- <S>
g used
access possible in user mode
O

CS 3214
'Iéch

FFFFFFFF £

C0400000 ™

1GB

Process 2 Active

IN kernel mode

access requires kernel mode

C0000000_" | free
o
N used
| access possible in user mode
0
= viginia CS 3214

T’wm

FFFFFFFF £ .
Process 2 Active
£0400000 INn user mode
m
O
—
C0000000_] / free
O
9p) used
] access possible in user mode
O —_
V]Ig]ma CS 3214

Meltdown Mitigation

* Post Meltdown, kernel and user mode no
longer use the same page table.

* Therefore, the (red) kernel mappings are
no longer iImmediately accessible once the
processor switches into kernel mode.

* Requires additional page table switch
once the kernel is entered (expensive),
otherwise, it's the same setup.

vlrgml-m-ﬁ Tech CS 3214
L

Paging to/from disk

ldea: hold only those data in physical memory that are
actually accessed by a process

Maintain map for each process
{ virtual addresses } — { physical addresses } U { disk addresses }

OS manages mapping, decides which virtual addresses
map to physical (if allocated) and which to disk

Disk addresses include:

— Executable .text, initialized data

— Swap space (typically lazily allocated)

— Memory-mapped (mmap’d) files (see example)

Demand paging: bring data in from disk lazily, on first
access

— Unbeknownst to application

==Virginia

Tech CS 3214
il

Backed by

Process

M emor kernel virtual memory <« Not paged, or swap file
y | stack €—1— swap file
Image }
OS maintains structure of y Td —p
; emory mapped region for
eaCh process S addreSS Shared |ibraries \\ COde: Shared .SO f||e
space — which addresses data: swap file (*)
are valid, what do they
refer to, even those that T
aren’t in main memory swap file
currently run-time heap (viamalloc) «
uninitialized data (.bss) <« swap file
Try: initialized data (.data) < | swapfile (%)
cat /proc/self/meps program text (.text) €1 executable
(*) first page-in from
0
e executable

Tech CS 3214
il

Servicing Page Faults

 When process accesses address that is not currently
mapped, the hardware will signal a fault
— If address is in kernel space, or refers to unmapped region
« Send SIGSEGYV to process
— Else determine which region address is in
* If heap, allocate new page (“minor fault”), or swap page from disk

 If code segment, read code from executable

. Ic];'ﬁI?t access to global variable, read data from disk; else swap from
is
 If access to mmapped file, read data from file
— Establish new v-p mapping in page table, and retry
 Note: there are no page faults for pages that are present
IN memory

— There may be TLB misses, however — on x86, these are
handled in hardware — can introduce hidden performance cost

vlrgml-m-ﬁ Tech CS 3214
L

Microscopic View of Stack Growth

push $ebp
sub $20, $esp

/ push $eax™— Page Fault!
/Ipush $ebx

__esp = 0x8004
0x8000 —esp = 0x8000
esp = OX/FE intr0e_stub:

“~esp = Ox7FES8

:esp = OX7FE4 call page_fault()
/void page_fault() { %

get fault addr
determine if it's close to user $esp /
Yes: allocate page frame

install page in page table
No: signal SIGSEGV to process

J)

vlrgml-ﬂ]]ﬁ Tech CS 3214

fork()/exec() revisited

. fork():] -
— Clone page table of parent \ /
— Set all entries read-only .

— Perform copy on write (if it happens while shared)

» exec():
— Remove all existing page table entries
« Unshares parent’s entries
— Start over as per instructions in executable

* Optimizes common case: child does an
exec() shortly after fork()

Vlrglnl-m-ﬁ Tech CS 3214
L

>

kernel space

> €

user space

v
Process 1

vaddr

Virini

>
mapping in
currently active
page table (1 set
per CPU for
current process)

mapping in
currently inactive
page table (1 set
per process)

Tech

page-in maps to

mmap
sbrk(POS)

CS 3214

page-out

page (frame) of
physical DRAM

user virtual page in a
process's address
space, page is
present/resident

user virtual page in a
process'’s address
space, page is not
present; OS will page-in
on demand

unused virtual address
space

accesses here lead to
SIGSEGV

kernel virtual address
space; accesses here
lead to SIGSEGV

QA

(@]

c

o

(7))

Ko)

-

Q

X Yy

A

()

(@)

o]

o

(7))

]

(7))

>

v
Process 1
vaddr Physical
DRAM Process 3
vaddr
Process 2
L. vaddr

]
m—1IgInia CS 3214

Tech

>

kernel space

> €

user space

W
Process 1

vaddr

Vireini

Process 2
vaddr

Tech

CS 3214

Physical
DRAM

Process 3
vaddr

A 7
(@)
m —
o fme®
(7))
F) 4
= L
Q
= v
A
()
(@)
(7))
E —
2 p :
v
Process 1
e Bgﬁl\;al Process 3
vaddr
Process 2
—— e .. vaddr
Vuglma CS 3214

Tech

QA
(@]
a
Q. 7.
()]
O
- v #
D
X VY

A
o))
(@]
c » |
o 7
(V)]
o
(V)]

> o

¥

Process 1 .
vaddr Physical \ 5 2
DRAM On-demand ©'O¢€ss
Pagin vaddr
Process 2 aging
L. vaddr

]
—Vnguna CS 3214

Tech

A 7

(@)
c
o e
(7))
Ko)
= L
Q
= v

A
()
(@)
o] o |
% s
= 7
A) Ry
> A ’ mmap() -

v

Process 1
vaddr Physical
DRAM Process 3
vaddr
Process 2
e .. vaddr
]
Vuglma CS 3214

Tech

>

kernel space

> €

user space

W
Process 1

vaddr

Vireini

e

evicted

to swap

Process 2
vaddr

Tech

CS 3214

read from

Physical
DRAM

Process 3
vaddr

Managing Physical Memory

« OS must decide what to use physical memory for

— Application Data
« Mostly per process, except for shared memory areas
« Heaps, stacks, BSS

— File Data (Single copy per file)
« Mmap’ed files, executables, shared libs
« Chunks of files recently accessed via explicit I/O
* When demand is greater than supply, must
rededicate physical memory by “evicting” pages to
disk
— Either done ahead of time with some hysteresis
— Or last minute (“direct reclaim”)

vlrgml-m-ﬁ Tech CS 3214
L

Page Replacement Strategies

* Prediction game: optimal strategy is to replace (“evict”) the
page whose data will be accessed farthest in the future

— Of course, can’t know that — use heuristics
* Most heuristics are based on “past = future” idea and
approximate LRU

— While adding guards against scenarios in which LRU is known to
fail, e.g. large looping accesses or single sequential reads

— Must approximate because per-access maintenance of LRU lists
Is too expensive

« Must weigh file data vs. process data
* Must weigh other pages from same process vs. all

Processes
— Local vs. global replacement policies

vlrgml-m-ﬁ Tech CS 3214
L

VM Access Time & Page Fault Rate

access time = p * memory access time
+ (1-p) * (page fault service time + memory access time)

« Consider expected access time in terms of fraction p of
page accesses that don’t cause page faults.

 Then 1-p is page fault frequency

 Assume p =0.99, assume memory is 100ns fast, and
page fault servicing takes 10ms — how much slower is
your VM system compared to physical memory?

e access time =99ns + 0.01*(10000100) ns ~ 100,000ns
or 0.1ms

— Compare to 100ns or 0.0001ms speed ~ about 1000x slowdown

« Conclusion: even relatively low page fault rates lead to
huge slowdown — must keep page fault rates very low

==—Virginia
CS 3214 4/10/202 27
W

Thrashing

* VM works well if working set size (amount of
memory accessed within an interesting time

span) can be accommodated in physical
memory

* |f working set size grows too large, OS will
continuously service page faults, and end up
evicting pages accessed soon after

» Result: “thrashing”
— Moving data to/from disk continually while not
making progress on computation
— Leads to low CPU utilization

V@% Toch CS 3214

Prefetching

» All modern VM systems use prefetching

— Usual strategy: detect sequential accesses to file
 even Iif done via virtual memory system & mmaped files

— Sometimes application-guided
 Linux readahead(2) system call

« E.g. Windows Vista remembers which data an
application touched (speeds up startup time)

* The performance of a VM system depends
both on its page replacement and its
prefetching strategies

vlrgml-m-ﬁ Tech CS 3214
L

Summary

 Virtual memory is a technique that
combines

— Address translation (Indirection)
— Demand paging
— Protection

to virtualize physical memory and protect
applications and the kernel

* |t iIs transparent to applications except for
its possible performance impact

vlrgml-m-ﬁ Tech CS 3214
L

