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Outline
• Memory management issues occur at multiple 

levels
– User memory management (within the confines of a 

process)
• Explicit vs implicit

– Virtual address space management (by OS)
– Physical memory management (by OS or hypervisor)
– Interaction with virtual/physical address translation



EXPLICIT MEMORY 
MANAGEMENT

Part 1

Some of the following slides are taken with permission from 
Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron 

http://csapp.cs.cmu.edu/public/lectures.html

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh


Dynamic Memory Allocation

• Explicit vs. Implicit Memory Allocator
– Explicit:  application allocates and frees space 

• E.g.,  malloc and free in C
– Implicit: application allocates, but does not free space

• E.g. garbage collection in Java, ML or Lisp
• Allocation

– In both cases the memory allocator provides an abstraction of memory as a 
set of blocks

– Doles out free memory blocks to application
• Will discuss explicit memory allocation today

Application
Dynamic Memory Allocator
Heap Memory
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The Malloc API
#include <stdlib.h>
void *malloc(size_t size)

– If successful:
• Returns a pointer to a memory block of at least size bytes, (typically) aligned to 

8-byte boundary; use memalign() for other alignments
• If size == 0, may return either NULL or a pointer that must be freed 

(platform-dependent)
– If unsuccessful: returns NULL (0) and sets errno.

void free(void *p)
– Returns the block pointed at by p to pool of available memory
– p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_t size) 
– Changes size of block p and returns pointer to new block.
– Contents of new block unchanged up to min of old and new size.



Assumptions

• Assumptions made in this lecture

– Memory is word addressed (each word can 
hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word
Allocated word



Allocation Examples
p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Constraints
• Applications: (clients)

– Can issue arbitrary sequence of allocation and free requests
– Free requests must correspond to an allocated block

• Allocators
– Can’t control number or size of allocated blocks
– Must respond immediately to all allocation requests

• i.e., can’t reorder or buffer requests
– Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• i.e., must maintain all data structures needed in memory they manage

– Must align blocks so they satisfy all alignment requirements
• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

– Can manipulate and modify only free memory
• Must not touch allocated memory

– Can’t move the allocated blocks once they are allocated
• i.e., compaction is not allowed



Goals for malloc/free design
• Primary goals

– Good time performance for malloc and free
• Ideally should take constant time (not always possible)
• Should certainly not take linear time in the number of blocks

– Good space utilization
• User allocated structures (“payload”) should be large fraction of the heap.
• Want to minimize “fragmentation”

• Additional goals
– Good locality properties

• Structures allocated close in time should be close in space
• “Similar” objects should be allocated close in space

– Robust
• Can check that free(p1) is on a valid allocated object p1
• Can check that memory references are to allocated space



Performance Goals: Throughput
• Given some sequence of malloc and free requests:

–  R0, R1, ..., Rk, ... , Rn-1
• Want to maximize throughput and peak memory utilization.

– These goals are often conflicting
– Performance of allocators depends on the specific nature of the 

requests
• Throughput:

– Number of completed requests per unit time
– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds 
• Throughput is 1,000 operations/second.



Performance Goals: 
Peak Memory Utilization

• Given some sequence of malloc and free requests:
–  R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk: 
–  malloc(p) results in a block with a payload of p bytes. 
– After request Rk has completed, the aggregate payload Pk  is the sum of 

currently allocated payloads.
• Def: Current heap size is denoted by Hk
• Def: Peak memory utilization: 

– After k requests, peak memory utilization is:
• Uk = ( maxi<k Pi )  /  Hk

– Ratio of everything allocated and not yet free’d vs. how much space 
allocator is using, considered at the point where aggregate allocation was 
at its peak



Peak Memory Utilization

Allocation /Deallocation Requests

Aggregate 
Payload Pk

Current Heap Size HkPeak
Lost to internal 
and external 

fragmentation

Used by 
application



Internal Fragmentation
• Poor memory utilization caused by fragmentation.

– Comes in two forms: internal and external fragmentation
• Definition: Internal fragmentation

– For any block, internal fragmentation is the difference between the block size 
and the payload size.

– Caused by overhead of maintaining heap data structures, padding for 
alignment purposes, or explicit policy decisions (e.g., not to split the block).

– Depends only on the pattern of previous requests, and thus is easy to 
measure.

payload Internal 
fragmentation

block

Internal 
fragmentation



External Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops!

Occurs when there is enough aggregate heap memory, but no single
free block is large enough; implies that allocator must obtain more memory 
via sbrk() and (eventually) may run out of memory

External fragmentation depends on the pattern of future requests, and thus is 
difficult to measure. 



Implementation Issues
• How do we know how much memory to free just given a 

pointer?
– free() takes no length!

• How do we keep track of the free blocks?
• What do we do with any extra space when allocating a 

structure that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation -- many might fit 

the request?
• How do we reinsert freed block into heap?



Knowing How Much to Free
•Standard method

– Keep the length of a block in the word preceding the block.
•This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5



Keeping Track of Free Blocks
• Method 1: Implicit list using lengths -- links all blocks

• Method 2: Explicit list among the free blocks using pointers within the free 
blocks

• Method 3: Segregated free list
– Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26



Method 1: Implicit List
• Need to identify whether each block is free or allocated

– Don’t want to use extra word – steal last bit (can do that 
because size is a multiple of some power of two)

– mask out low order bit when reading size.

size
1 word

Format of
allocated and
free blocks

payload

a = 1: allocated block  
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

a

optional
padding



Side Note
The following slides use explicit bit 
manipulation using C’s &, |, etc. operators.
Do not use those in your project.
Use bitfields instead, which modern 
compilers generally compile down to code 
that’s identical in performance.



Implicit List: Finding a Free Block
• First fit:

– Search list from beginning, choose first free block that fits

– Can take linear time in total number of blocks (allocated and free)
– In practice it can cause “splinters” at beginning of list

• Next fit:
– Like first-fit, but search list from location of end of previous search
– Research suggests that fragmentation is worse 

• Best fit:
– Search the list, choose the free block with the closest size that fits
– Keeps fragments small --- usually helps fragmentation
– Will typically run slower than first-fit

p = start; 
while ((p < end) ||    // not passed end
       (*p & 1) ||     // already allocated
       (*p <= len))    // too small 

p = p + (*p & ~1);   



Implicit List: Allocating in Free Block
• Allocating in a free block - splitting

– Since allocated space might be smaller than free space, we might 
want to split the block

void split(ptr p, int len) {
  int newsize = ((len + 1) >> 1) << 1;  // add 1 and round up
  int oldsize = *p & ~1;                // mask out low bit
  *p = newsize | 1;                     // set new length
  if (newsize < oldsize)
    *(p+newsize) = oldsize - newsize;   // set length in remaining
}                                       // part of block

4 4 26

4 24

p

24

split(p, 4)



Implicit List: Freeing a Block
• Simplest implementation:

– Only need to clear allocated flag
  void free_block(ptr p) { *p = *p & -2}

– But can lead to “false fragmentation” 

There is enough free space, but the allocator won’t be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5) Oops!



Implicit List: Coalescing
• Join (coalesce) with next and/or previous block if they are 

free
– Coalescing with next block

   
4 24 2

free(p) p

4 4 2

4

6
void free_block(ptr p) {
    *p = *p & -2;          // clear allocated flag
    next = p + *p;         // find next block
    if ((*next & 1) == 0)
      *p = *p + *next;    // add to this block if
}                         //    not allocated

But how do we coalesce with previous block?



Implicit List: Bidirectional Coalescing 
• Boundary tags [Knuth73]

– Replicate size/allocated word at bottom of free blocks
– Allows us to traverse the “list” backwards, but requires extra space

size
1 word

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block  
a = 0: free block

size: total block size

payload: application data (allocated
                                            blocks only)

a

size aBoundary tag
  (footer)

4 4 4 4 6 46 4

Header



Constant Time Coalescing

allocated

allocated

allocated

free

free

allocated

free

free
block being
freed

Case 1 Case 2 Case 3 Case 4



m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1



m1 1

Constant Time Coalescing (Case 2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0



m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1



m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0



Summary of Key Allocator Policies
• Placement policy:

– First fit, next fit, best fit, etc.
– Trades off lower throughput for less fragmentation

• Interesting observation: segregated free lists (discussed later) approximate a best fit 
placement policy without having the search entire free list.

• Splitting policy:
– When do we go ahead and split free blocks?
– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
– Immediate coalescing: coalesce adjacent blocks each time free is called 
– Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. e.g.,
• Coalesce as you scan the free list for malloc.
• Coalesce when the amount of external fragmentation reaches some threshold.



Implicit Lists: Summary
• Implementation: very simple
• Allocate: linear time worst case
• Free: constant time worst case -- even taking coalescing into account
• Memory usage: will depend on placement policy

– First fit, next fit or best fit

• Not used in practice for malloc/free because of linear time 
allocate
– Used in many special purpose applications

• However, the concepts of splitting and boundary tag 
coalescing are general to all allocators



Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using 
pointers within the free blocks

Method 3: Segregated free lists
Different free lists for different size classes

Method 4: Blocks sorted by size (not discussed)
Can use a balanced tree (e.g. Red-Black tree) with pointers 

within each free block, and the length used as a key

5 4 26

5 4 26



Explicit Free Lists

• Use data space for link pointers
– Typically doubly linked
– Still need boundary tags for coalescing

– Links are not necessarily in the same order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

Logical View

Physical View



Allocated vs. Free Blocks

size

Allocated Block

payload and
padding

a

size a

size

Free Block

a

size a

next
prev

Use bitfields:

struct xyz {
   unsigned a:1;
   unsigned size:31;
}

Use
struct listelem

Ensure
payload 
alignment



Splitting & Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

Note: if free block is left at same position in free list, can 
also split off bottom of block – then no pointer 
manipulation necessary



Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly 

freed block?
– LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

– Address-ordered policy
• Insert freed blocks so that free list blocks are always in address order

– i.e. addr(pred) < addr(curr) < addr(succ)
•  Con: requires search
•  Pro: studies suggest fragmentation is better than LIFO



Freeing With a LIFO Policy
• Case 1: a-a-a

– Insert self at beginning of 
free list

• Case 2: a-a-f
– Splice out next, coalesce 

self and next, and add to 
beginning of free list

pred (p) succ (s)

selfallocated allocated

p s

selfallocated free
before:

p s
freeallocated

after:

HEAD FIRST

HEAD FIRST

HEAD FIRST



Freeing With a LIFO Policy (cont)
• Case 3: f-a-a

– Splice out prev, 
coalesce with self, and 
add to beginning of free 
list

• Case 4: f-a-f
– Splice out prev and 

next, coalesce with self, 
and add to beginning of 
list

p s

selffree allocated

before:

p s
free allocated

after:

p1 s1

selffree free

before:

free

after:

p2 s2

p1 s1 p2 s2

HEAD FIRST

HEAD FIRST

HEAD FIRST

HEAD FIRST



Explicit List Summary
• Comparison to implicit list:

– Allocate is linear time in number of free blocks instead of total blocks  -- 
much faster allocates when most of the memory is full 

– Slightly more complicated allocate and free since needs to splice blocks in 
and out of the list

– Some extra space for the links (2 extra words needed for each block)

• Main use of linked lists is in conjunction with segregated free lists
– Keep multiple linked lists of different size classes, or possibly for different 

types of objects



Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using 
pointers within the free blocks

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree (e.g. Red-Black tree) with pointers 

within each free block, and the length used as a key

5 4 26

5 4 26



Segregated Storage
• Each size class has its own collection of blocks

1-2

3

4

5-8

9-16

■ Often have separate size class for every small size (2,3,4,…)
■ For larger sizes can have a size class for each power of 2



Simple Segregated Storage
• Separate heap and free list 

for each size class
• No splitting
• To allocate a block of size n:

– If free list for size n is not empty,
• allocate first block on list (note, 

list can be implicit or explicit)
– If free list is empty, 

• get a new page 
• create new free list from all 

blocks in page
• allocate first block on list

– Constant time
• To free a block:

– Add to free list
– If page is empty, return the page for use by another size (optional)

• Tradeoffs:
– Fast, but can fragment badly



Segregated Fits
• Array of free lists, each one for 

some size class
• To allocate a block of size n:

– Search appropriate free list for 
block of size m > n

– If an appropriate block is found:
• Split block and place fragment on 

appropriate list (optional)
– If no block is found, try next larger class
– Repeat until block is found

• To free a block:
– Coalesce and place on appropriate list (optional)

• Tradeoffs
– Faster search than sequential fits (i.e., log time 

for power of two size classes)
– Controls fragmentation of simple segregated storage
– Coalescing can increase search times

• Deferred coalescing can help 



For More Info on Allocators
• D. Knuth, “The Art of Computer Programming, Second 

Edition”, Addison Wesley, 1973
– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.

– Comprehensive survey
• NB: the mechanics of dynamic memory allocation have 

remained largely unchanged; however, modern memory 
allocators must pay a lot of attention to scalability in 
multi-threaded scenarios, which is beyond our scope here

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4688&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4688&rep=rep1&type=pdf

