
CS 3214
Computer Systems

Dynamic Memory Management

Outline
• Memory management issues occur at multiple

levels
– User memory management (within the confines of a

process)
• Explicit vs implicit

– Virtual address space management (by OS)
– Physical memory management (by OS or hypervisor)
– Interaction with virtual/physical address translation

EXPLICIT MEMORY
MANAGEMENT

Part 1

Some of the following slides are taken with permission from
Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh

Dynamic Memory Allocation

• Explicit vs. Implicit Memory Allocator
– Explicit: application allocates and frees space

• E.g., malloc and free in C
– Implicit: application allocates, but does not free space

• E.g. garbage collection in Java, ML or Lisp
• Allocation

– In both cases the memory allocator provides an abstraction of memory as a
set of blocks

– Doles out free memory blocks to application
• Will discuss explicit memory allocation today

Application
Dynamic Memory Allocator
Heap Memory

Process
Memory
Image

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)
initialized data (.data)
uninitialized data (.bss)

stack

0

%esp

memory invisible to
 user code

the “brk” ptr

Allocators request
additional heap memory
from the operating system
using the sbrk function.

Initial start of the heap is
randomized
(a bit above end of .bss,
usually)

Not drawn to scale

The Malloc API
#include <stdlib.h>
void *malloc(size_t size)

– If successful:
• Returns a pointer to a memory block of at least size bytes, (typically) aligned to

8-byte boundary; use memalign() for other alignments
• If size == 0, may return either NULL or a pointer that must be freed

(platform-dependent)
– If unsuccessful: returns NULL (0) and sets errno.

void free(void *p)
– Returns the block pointed at by p to pool of available memory
– p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_t size)
– Changes size of block p and returns pointer to new block.
– Contents of new block unchanged up to min of old and new size.

Assumptions

• Assumptions made in this lecture

– Memory is word addressed (each word can
hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word
Allocated word

Allocation Examples
p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Constraints
• Applications: (clients)

– Can issue arbitrary sequence of allocation and free requests
– Free requests must correspond to an allocated block

• Allocators
– Can’t control number or size of allocated blocks
– Must respond immediately to all allocation requests

• i.e., can’t reorder or buffer requests
– Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• i.e., must maintain all data structures needed in memory they manage

– Must align blocks so they satisfy all alignment requirements
• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

– Can manipulate and modify only free memory
• Must not touch allocated memory

– Can’t move the allocated blocks once they are allocated
• i.e., compaction is not allowed

Goals for malloc/free design
• Primary goals

– Good time performance for malloc and free
• Ideally should take constant time (not always possible)
• Should certainly not take linear time in the number of blocks

– Good space utilization
• User allocated structures (“payload”) should be large fraction of the heap.
• Want to minimize “fragmentation”

• Additional goals
– Good locality properties

• Structures allocated close in time should be close in space
• “Similar” objects should be allocated close in space

– Robust
• Can check that free(p1) is on a valid allocated object p1
• Can check that memory references are to allocated space

Performance Goals: Throughput
• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1
• Want to maximize throughput and peak memory utilization.

– These goals are often conflicting
– Performance of allocators depends on the specific nature of the

requests
• Throughput:

– Number of completed requests per unit time
– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds
• Throughput is 1,000 operations/second.

Performance Goals:
Peak Memory Utilization

• Given some sequence of malloc and free requests:
– R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk:
– malloc(p) results in a block with a payload of p bytes.
– After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads.
• Def: Current heap size is denoted by Hk
• Def: Peak memory utilization:

– After k requests, peak memory utilization is:
• Uk = (maxi<k Pi) / Hk

– Ratio of everything allocated and not yet free’d vs. how much space
allocator is using, considered at the point where aggregate allocation was
at its peak

Peak Memory Utilization

Allocation /Deallocation Requests

Aggregate
Payload Pk

Current Heap Size HkPeak
Lost to internal
and external

fragmentation

Used by
application

Internal Fragmentation
• Poor memory utilization caused by fragmentation.

– Comes in two forms: internal and external fragmentation
• Definition: Internal fragmentation

– For any block, internal fragmentation is the difference between the block size
and the payload size.

– Caused by overhead of maintaining heap data structures, padding for
alignment purposes, or explicit policy decisions (e.g., not to split the block).

– Depends only on the pattern of previous requests, and thus is easy to
measure.

payload Internal
fragmentation

block

Internal
fragmentation

External Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops!

Occurs when there is enough aggregate heap memory, but no single
free block is large enough; implies that allocator must obtain more memory
via sbrk() and (eventually) may run out of memory

External fragmentation depends on the pattern of future requests, and thus is
difficult to measure.

Implementation Issues
• How do we know how much memory to free just given a

pointer?
– free() takes no length!

• How do we keep track of the free blocks?
• What do we do with any extra space when allocating a

structure that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation -- many might fit

the request?
• How do we reinsert freed block into heap?

Knowing How Much to Free
•Standard method

– Keep the length of a block in the word preceding the block.
•This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

Keeping Track of Free Blocks
• Method 1: Implicit list using lengths -- links all blocks

• Method 2: Explicit list among the free blocks using pointers within the free
blocks

• Method 3: Segregated free list
– Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Method 1: Implicit List
• Need to identify whether each block is free or allocated

– Don’t want to use extra word – steal last bit (can do that
because size is a multiple of some power of two)

– mask out low order bit when reading size.

size
1 word

Format of
allocated and
free blocks

payload

a = 1: allocated block
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

a

optional
padding

Side Note
The following slides use explicit bit
manipulation using C’s &, |, etc. operators.
Do not use those in your project.
Use bitfields instead, which modern
compilers generally compile down to code
that’s identical in performance.

Implicit List: Finding a Free Block
• First fit:

– Search list from beginning, choose first free block that fits

– Can take linear time in total number of blocks (allocated and free)
– In practice it can cause “splinters” at beginning of list

• Next fit:
– Like first-fit, but search list from location of end of previous search
– Research suggests that fragmentation is worse

• Best fit:
– Search the list, choose the free block with the closest size that fits
– Keeps fragments small --- usually helps fragmentation
– Will typically run slower than first-fit

p = start;
while ((p < end) || // not passed end
 (*p & 1) || // already allocated
 (*p <= len)) // too small

p = p + (*p & ~1);

Implicit List: Allocating in Free Block
• Allocating in a free block - splitting

– Since allocated space might be smaller than free space, we might
want to split the block

void split(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & ~1; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

split(p, 4)

Implicit List: Freeing a Block
• Simplest implementation:

– Only need to clear allocated flag
 void free_block(ptr p) { *p = *p & -2}

– But can lead to “false fragmentation”

There is enough free space, but the allocator won’t be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5) Oops!

Implicit List: Coalescing
• Join (coalesce) with next and/or previous block if they are

free
– Coalescing with next block

4 24 2

free(p) p

4 4 2

4

6
void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

But how do we coalesce with previous block?

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

– Replicate size/allocated word at bottom of free blocks
– Allows us to traverse the “list” backwards, but requires extra space

size
1 word

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data (allocated
 blocks only)

a

size aBoundary tag
 (footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

allocated

allocated

allocated

free

free

allocated

free

free
block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

m1 1

Constant Time Coalescing (Case 2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Summary of Key Allocator Policies
• Placement policy:

– First fit, next fit, best fit, etc.
– Trades off lower throughput for less fragmentation

• Interesting observation: segregated free lists (discussed later) approximate a best fit
placement policy without having the search entire free list.

• Splitting policy:
– When do we go ahead and split free blocks?
– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
– Immediate coalescing: coalesce adjacent blocks each time free is called
– Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. e.g.,
• Coalesce as you scan the free list for malloc.
• Coalesce when the amount of external fragmentation reaches some threshold.

Implicit Lists: Summary
• Implementation: very simple
• Allocate: linear time worst case
• Free: constant time worst case -- even taking coalescing into account
• Memory usage: will depend on placement policy

– First fit, next fit or best fit

• Not used in practice for malloc/free because of linear time
allocate
– Used in many special purpose applications

• However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using
pointers within the free blocks

Method 3: Segregated free lists
Different free lists for different size classes

Method 4: Blocks sorted by size (not discussed)
Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

Explicit Free Lists

• Use data space for link pointers
– Typically doubly linked
– Still need boundary tags for coalescing

– Links are not necessarily in the same order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

Logical View

Physical View

Allocated vs. Free Blocks

size

Allocated Block

payload and
padding

a

size a

size

Free Block

a

size a

next
prev

Use bitfields:

struct xyz {
 unsigned a:1;
 unsigned size:31;
}

Use
struct listelem

Ensure
payload
alignment

Splitting & Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

Note: if free block is left at same position in free list, can
also split off bottom of block – then no pointer
manipulation necessary

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly

freed block?
– LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

– Address-ordered policy
• Insert freed blocks so that free list blocks are always in address order

– i.e. addr(pred) < addr(curr) < addr(succ)
• Con: requires search
• Pro: studies suggest fragmentation is better than LIFO

Freeing With a LIFO Policy
• Case 1: a-a-a

– Insert self at beginning of
free list

• Case 2: a-a-f
– Splice out next, coalesce

self and next, and add to
beginning of free list

pred (p) succ (s)

selfallocated allocated

p s

selfallocated free
before:

p s
freeallocated

after:

HEAD FIRST

HEAD FIRST

HEAD FIRST

Freeing With a LIFO Policy (cont)
• Case 3: f-a-a

– Splice out prev,
coalesce with self, and
add to beginning of free
list

• Case 4: f-a-f
– Splice out prev and

next, coalesce with self,
and add to beginning of
list

p s

selffree allocated

before:

p s
free allocated

after:

p1 s1

selffree free

before:

free

after:

p2 s2

p1 s1 p2 s2

HEAD FIRST

HEAD FIRST

HEAD FIRST

HEAD FIRST

Explicit List Summary
• Comparison to implicit list:

– Allocate is linear time in number of free blocks instead of total blocks --
much faster allocates when most of the memory is full

– Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

– Some extra space for the links (2 extra words needed for each block)

• Main use of linked lists is in conjunction with segregated free lists
– Keep multiple linked lists of different size classes, or possibly for different

types of objects

Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using
pointers within the free blocks

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

Segregated Storage
• Each size class has its own collection of blocks

1-2

3

4

5-8

9-16

■ Often have separate size class for every small size (2,3,4,…)
■ For larger sizes can have a size class for each power of 2

Simple Segregated Storage
• Separate heap and free list

for each size class
• No splitting
• To allocate a block of size n:

– If free list for size n is not empty,
• allocate first block on list (note,

list can be implicit or explicit)
– If free list is empty,

• get a new page
• create new free list from all

blocks in page
• allocate first block on list

– Constant time
• To free a block:

– Add to free list
– If page is empty, return the page for use by another size (optional)

• Tradeoffs:
– Fast, but can fragment badly

Segregated Fits
• Array of free lists, each one for

some size class
• To allocate a block of size n:

– Search appropriate free list for
block of size m > n

– If an appropriate block is found:
• Split block and place fragment on

appropriate list (optional)
– If no block is found, try next larger class
– Repeat until block is found

• To free a block:
– Coalesce and place on appropriate list (optional)

• Tradeoffs
– Faster search than sequential fits (i.e., log time

for power of two size classes)
– Controls fragmentation of simple segregated storage
– Coalescing can increase search times

• Deferred coalescing can help

For More Info on Allocators
• D. Knuth, “The Art of Computer Programming, Second

Edition”, Addison Wesley, 1973
– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

– Comprehensive survey
• NB: the mechanics of dynamic memory allocation have

remained largely unchanged; however, modern memory
allocators must pay a lot of attention to scalability in
multi-threaded scenarios, which is beyond our scope here

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4688&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4688&rep=rep1&type=pdf

