
Atomicity Violations
Godmar Back

Atomicity Violations
● Are a type of concurrency bug that can occur even if proper locking discipline

is followed (that is, if a lock is consistently held while accessing or updating
shared data)

● Occurs if updates that should be atomic are not done under the protection of
the same lock when combined

● Possible pattern
a. Acquire Lock protecting S
b. Extract information I from shared state S
c. (possibly) Release Lock protecting S
d. …. Commit to action based on information I ….
e. Acquire Lock protecting S’
f. Act on shared state S’ based on saved information I

g. Release Lock protecting S’

Fails if information I
obtained in b) is out of
date in f) due to an
update to shared state.
S may be the same as S’

Atomicity Violation Example
char *p = ….; /* shared variable */
pthread_mutex_t lp ; /* protects ‘p’ */
….
int getplen() {
 pthread_mutex_lock (&lp);
 int len = strlen(p);
 pthread_mutex_unlock (&lp);
 return len;
}
…
int nchars = getplen(); // obtain length (safe by itself)
char *copy = malloc(nchars + 1); // commit to allocate memory
pthread_mutex_lock (&lp);
strcpy(copy, p); // copy now possibly out-of-date version
pthread_mutex_unlock (&lp);

Atomicity Violation Example (2)
public synchronized StringBuffer append(StringBuffer sb) {
 // note: StringBuffer.length() is synchronized
 int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity (newcount);
 // StringBuffer.getChars() is synchronized
 sb.getChars(0, len, value, count);
 count = newcount;
 return this;
}

Found by Flanagan/Freund: Atomizer: A Dynamic Atomicity Checker for Multi-Threaded Programs,
POPL 2004

Obtain length

StringIndexOutOfBoundsException
if length has changed

http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf

Atomicity Violation Example (3)

// somewhere in future_get()....
// lock protects state
pthread_mutex_lock (&future->lock);
if (future->state == NEW) {
 // lock containing list
 pthread_mutex_lock (&future->owner->lock);
 list_remove (&future->elem);
 pthread_mutex_unlock (&future->owner->lock);
 f->state = RUNNING;
 // run task
}

pthread_mutex_lock (&worker->lock); // protects worker queue
....
 struct listelem *e = list_pop_front (&worker->queue); // grab task from worker queue
 struct future *f = list_entry(e, struct future, elem);
 pthread_mutex_lock (&f->lock); // lock task to update state
 f->state = RUNNING; // mark as running
 // run task

Top: worker locks queue, removes
task and commits to running it.

Left: joiner sees fresh task, commits
to running it, removes it from queue

Task is run twice!

Atomicity requirement: changing the
task’s state and removing it from the
queue it is on must be one atomic
operation

How to acquire 2 locks in opposite order while
avoiding deadlock
A.lock()

.… find B

B.lock()

// holding A & B

retry:

 B.lock()

 …. find A

 if (!A.trylock())

{ B.unlock(); goto retry; }

// holding A & B

