Performance and Software Engineering Aspects of

Automatic Memory Management

Ali R. Butt

Virginia Tech

April 7, 2025
Slides by: Godmar Back

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 1/14 1/14



Performance Aspects

@ Real-world Garbage Collectors vary widely in the trade-offs they make. Decades
have been spent engineering them.

e E.g. Java 10 ships with four different collectors; ZGC is a 5th collector added in 2018.

@ They differ in many characteristics: program throughput, memory overhead, GC
throughput, scalability, etc.

@ Having a good understanding of your workload is a must to properly tune the
garbage collector’s policies and understand its performance impact

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 2/14 2/14


https://docs.oracle.com/javase/10/gctuning/available-collectors.htm
https://openjdk.java.net/jeps/333

Modeling the Cost of GC

@ Compacting Collectors: Garbage collectors have near perfect knowledge of the
object graph and in particular the locations where pointers to other objects are
stored. Thus, they can move objects (and update any pointers to them),
allowing for compaction. Live objects are “evacuated” or “scavenged” from a
region of the heap, leaving only unreachable objects behind, eventually allowing
the region to be reclaimed in one fell swoop.

@ Cost of GC thus depends on

@ Cost of marking + evacuation - proportional to the size of the live objects in the area that
is marked

@ Cost of sweeping - in theory, constant. In practice, allocator will need to zero out memory
for reuse in most languages, thus proportional to the amount of garbage produced

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 3/14 3/14



Memory Allocation Time Profile

Allocated
Memory

Start time — t, End time — t,
Figure 1: Memory Allocation vs Time in the absence of GC. Mz
Amax denotes the heap limit. Garbage increases monotonically. VIRGINIA TECH

Ali R. Butt GC/Performance and SE 4/14 4/14



Simplified Memory Allocation Time Profile

Allocated
+ Memory
Al'lgx
&
S
&
¢
(§\0
garbage
Time
Start time — t, End time — t,
Figure 2: Simplified memory allocation profile, showing one GC W

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 5/14 5/14



Synthetic Example

LargeliveHeap.java

Frames Objects
public class LargeLiveHeap main:10 empty array
{ &

numLive 1|2

public static void main(String [lav) { numAllocations

int numLive l
Return

= Integer.parselnt(av[0]); value

int numAllocations
= Integer.parselnt(av([i]);

byte[][] 1 = new byte[numLive] [];
for (int i = 0; i < numAllocations; i++)
1[i % numLive] = new byte[100000] ;

) ) Figure 3: numLive = 3, numAllocations = 12

How does GC time change with Apnax? ) W

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 6/14 6/14



Heap Size vs GC Frequency

Large Live Heap Sizes tend to increase frequency of garbage collections when
JVM approaches heap limit (in Java -Xmx switch)

Policy question: should JVM ask OS for more memory and if so, how much?

General trade-off between amount of memory JVM is willing to use and
achievable throughput

Traditional rule of thumb: budget 1.5x — 2.5x the size of the live heap to stay
within acceptable performance overhead compared to explicit allocation; but
appears to be too optimistic

Hertz 2005 [2]:

@ GC outperforms malloc with 5x

@ GC needs 3x for 17% degradation

e With only 2x may be up to 70% slower

Performance degradation (“gc thrashing”) as live heap size approaches /7
maximum heap size VIRGINIA TECH

Ali R. Butt GC/Performance and SE 7/14 7/14



The Generational Hypothesis

@ Likelihood of objects to stay live increases over
time, aka “most objects dle young” Minorcollection:: Major collections

@ Allocate objects in special area called
“nursery,” or “Eden” space which is collected
more frequently in minor collections

Bytes surviving

@ Evacuate surviving objects into older
generation(s) which is less frequently collected
in major collections

@ This requires coordination between mutator _ _ _
(user program) and collector through write Figure 4: Generational Hypothesis
barrier:

@ Mutator must inform collector of pointers into Eden
Space: old.field = young must add a root for

young xz

VIRGINIA TECH

Bytes allocated

Ali R. Butt GC/Performance and SE 8/14 8/14



Garbage Collection vs Mutators

What if the reachability graph changes while GC takes place?

Must avoid inadvertently missing the last pointer to an object that keeps it alive

@ “Stop-the-World" approach. Stop all mutators while collecting. Leads to “GC
Pauses”

@ Incremental collection. Do small chunks of GC work while allocating objects

e Concurrent/Parallel collection. GC runs in a separate thread that synchronizes

with mutator threads in some way - typically, the mutator informs the collector
of new edges created, and/or the collector informing the mutator when pointers

have changed

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 9/14 9/14



G1GC and ZGC

@ Current default collector: G1 GC see Beckwith 2013 and G1 Tutorial
o Designed for multicore systems where idle cores are available to assist in GC
e ZGC (2018), see ZGC Video (Listen to 7:51 on tuning)

@ Single generation collector with low latency (stops mutator only during root scanning)
@ Use load barriers to be able to move objects without stopping mutator

@ For a balanced perspective, recommend these blog posts:

o Modern garbage collection: Hearn 2016
@ part 2: Hearn 2019

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 10/14 10/14


https://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All/
https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
https://www.youtube.com/watch?v=7k_XfLGu-Ts
https://youtu.be/7k_XfLGu-Ts?t=471
https://blog.plan99.net/modern-garbage-collection-911ef4f8bd8e
https://blog.plan99.net/modern-garbage-collection-part-2-1c88847abcfd

Programmer’s Perspective

@ Your program runs out of memory (in Java, OutOfMemoryError is thrown).
This happens when your live heap size exceeds the memory limit, which typically
happens for one of the following 3 reasons:

o Heap Size Limit is too low
o Leaks
o Bloat

@ Your program's performance degrades because a lot of time is spent in GC
o Churn
o Lack of headroom

\/a

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 11/14 11/14



Leak vs Bloat vs Churn

o Leaks: the live heap contains reachable objects that the program will not access
in the future (though it could), e.g.

o items placed in hash maps that will not be looked up
e event handlers and/or callbacks registered and not unregistered

@ Weak references allow garbage collector to free objects that can be recreated,
e.g. when caching

@ Bloat: your heap contains only objects your program will access, but these
objects take up too much space, e.g. [1]

o Boxed integer in Java
o Items stored in HashMaps

@ Memory Analysis tools help with leaks and bloat

@ Churn: your program allocates many short-lived objects (high allocation rate);
particularly important on resource-constrained devices such as Android [U%

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 12/14 12/14


https://developer.android.com/topic/performance/memory#churn

Conservative Garbage Collection

@ Precise garbage collectors have precise information regarding the structure of all
heap objects and stack frames, thus precise knowledge of all locations that store
pointers

@ This is a viable assumption in managed languages: Java, C*, JavaScript,
Python, Go, but it's (generally) not viable in C/C++

@ Conservative collectors scan the heap and assume anything that could be a
pointer is one

@ May keep some objects alive that are not reachable
@ Boehm's GC is a well-known collector for C/C++

@ GC Safety is the property of a compiler to avoid producing code that could
mislead a garbage collector into missing pointers (available in C++11)

e valgrind's leak detection uses the same approach [URL] \V/7ak

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 13/14 13/14


https://www.hboehm.info/gc/
https://valgrind.org/docs/manual/mc-manual.html#mc-manual.leaks

References

[1] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy.
Patterns of memory inefficiency.
In Proceedings of the 25th European Conference on Object-Oriented
Programming, ECOOP'11, page 383-407, Berlin, Heidelberg, 2011.
Springer-Verlag.

[2] Matthew Hertz and Emery D. Berger.

Quantifying the performance of garbage collection vs. explicit memory
management.

In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
'05, page 313-326, 2005. W

VIRGINIA TECH

Ali R. Butt GC/Performance and SE 14/14 14 /14



