
CS 3214 Spring 2025 Midterm

March 31, 2025

• This is a closed-book, closed-internet, closed-cell/smart phone or watch and closed-computer exam.
However, you may refer to your sheet of prepared notes.

• Your exam should have 10 pages with 8 questions totaling 100 points. You have 75 minutes. Please
write your answers in the space provided on the exam paper.

• If you finish the exam early you are expected to leave the room very quietly. If you finish within 15
minutes or less before the end of the allotted time, please stay in your seat until the end.

• Answers will be graded on correctness and clarity. The space in which to write answers to the
questions is kept purposefully tight, requiring you to be concise. You may lose points if your solution
is more complicated than necessary or if you provide extraneous information along with a correct
solution.

Name (printed) PID @vt.edu

Section: ↭ Dr. Butt ↭ Dr. Williams

I accept the letter and the spirit of the Virginia Tech undergraduate honor code — I have not given or
received aid on this exam.

(signed)

You are expected to keep the content of this exam secret until told otherwise by your instructor. Please
do not start until instructed to do so.

Problem Score

1 Doubtful! 11

2 Guarded! 7

3 Shelled! 19

4 Forked! 13

5 That’s BSS! 17

6 Threaded! 17

7 Sema Down! 13

8 A Choice was made! 3

Total 100

CS 3214 Midterm Fall 2023

1 Doubtful!

1. Two process can communicate with each other via a pipe. (1 pt)

↭ true / ↭ false

2. Linking order for libraries does not matter for the linker to accurately link a binary. (1 pt)

↭ true / ↭ false

3. The use of static libraries results in smaller binaries than dynamic libraries. (1 pt)

↭ true / ↭ false

4. A system call is the mechanism used for mathematical routines, such as sin, pow, etc. (1 pt)

↭ true / ↭ false

5. The maximum number of processes allowed in a system is limited by the number of CPUs on the
system. (1 pt)

↭ true / ↭ false

6. All system calls are blocking, meaning the process calling the system call will enter the BLOCKED
state. (1 pt)

↭ true / ↭ false

7. Threads share an address space and a stack, but have independent register state. (1 pt)

↭ true / ↭ false

8. If a producer process writes to a pipe faster than the consumer process reads from a pipe, some data
from the pipe will be lost. (1 pt)

↭ true / ↭ false

9. A process that has called sleep() is most likely in the READY state. (1 pt)

↭ true / ↭ false

10. A call to pthread cond wait() always returns immediately. (1 pt)

↭ true / ↭ false

11. A process scheduler transitions process state from READY to RUNNING and vice versa. (1 pt)

↭ true / ↭ false

2 Guarded!

A CS3214 student is writing an OS for some new embedded device hardware consisting of a CPU and a
storage device. Unfortunately the CPU does not have an implementation of a supervisor/user mode. The
storage device is accessible via a special instruction out that writes a specified byte to a specified o!set on
the storage device.

In order to ensure that multiple user programs can run without interfering with one another, the
student has implemented ”system calls” to manage read/write to the storage device via permissioned files
in a filesystem. In other words, the filesystem checks that a user has permission to write to the o!set on
the device corresponding to where the file is stored before performing the write to the storage device via
the out instruction.

2

True

False

False

False

False

False

False

False

False

False

True

CS 3214 Midterm Fall 2023

1. Fill in the blank: this system lacks mode operation? (2 pts)

2. What are the dangers of running a user program that directly uses the out instruction? (5 pts)

3 Shelled!

Two CS3214 students, Alice and Bob, wrote a shell for project 1. Alice implemented kill as a builtin,
whereas Bob did not. When running either Alice or Bob’s shell, assume an identical filesystem that
contains standard UNIX utilties, including /usr/bin/kill, and that the PATH contains /usr/bin (but
nothing else).

1. Fill in the blank: (1 pt)

PATH is an example of an variable.

2. Recall the which utility in UNIX. According to the manpage:

which returns the pathnames of the files (or links) which would be executed in the current
environment, had its arguments been given as commands in a strictly POSIX-conformant
shell. It does this by searching the PATH for executable files matching the names of the
arguments.

(a) What is the result of running which kill in Alice’s shell? (2 pts)

(b) What is the result of running which kill in Bob’s shell? (2 pts)

3. Suppose a program foo is running in the background, but stuck in an infinite loop (e.g., for(;;);).

(a) Of the three process states we learned about in class, what state(s) would you expect to see foo
in? (2 pts)

(b) Describe the actions taken by Alice’s shell when executing kill <pid> where <pid> corresponds
to a process foo stuck in an infinite loop (e.g., for(;;);). (3 pts)

3

Dual mode operation

The user may bypass the filesystem checks and/or corrupt stored data

Environment

/usr/bin/kill

/usr/bin/kill

Running or Ready

CS 3214 Midterm Fall 2023

(c) Describe the actions taken by Bob’s shell when executing kill <pid> where <pid> corresponds
to a process foo stuck in an infinite loop. (3 pts)

4. Now suppose the system is in an overloaded state where the system prevents any new process creation
from the user (e.g., fork fails) to due to resource exhaustion.

(a) What happens when Alice tries to kill a process with kill <pid>? (3 pts)

(b) What happens when Bob tries to kill a process with kill <pid>? (3 pts)

4 Forked!

How many times do each of the following programs output ”Hi CS3214!”?

a) #include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {

printf("Hi CS3214! \n ");

fork();

char *argv_for_echo[] = {"echo" , "Hi CS3214!" };

execvp("echo" , argv_for_echo);

}

(3 pts)

b) #include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {

fork();

4

The shell forks and execs the binary at /usr/bin/kill which issues the kill system
call to terminate the process

The shell builtin calls the kill system call to terminate the process

The shell builtin calls the kill system call to terminate the process

The shell fails to fork and exec the kill binary so Bob cant kill the
process

3

CS 3214 Midterm Fall 2023

for (int i=0; i<10; i++) {

printf("Hi CS3214! \n ");

char *argv_for_echo[] = {"echo" , "Hi CS3214!" };

execvp("echo" , argv_for_echo);

}

}

(3 pts)

c) #include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {

fork();

fork();

printf("Hi CS3214! \n ");

char *argv_for_echo[] = {"echo" , "Hi CS3214!" };

execvp("echo" , argv_for_echo);

execvp("echo" , argv_for_echo);

}

(3 pts)

d) #include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {

char *argv_for_echo[] = {"echo" , "Hi CS3214!" };

fork();

execvp("echo" , argv_for_echo);

fork();

execvp("echo" , argv_for_echo);

}

(4 pts)

5

4

8

2

CS 3214 Midterm Fall 2023

5 That’s BSS!

Two CS3214 students, Alice and Bob, were working on a project outside of class which involved computation
on a large array of bytes initially all set to 0xff. They got into an argument over the very first lines in the
program. Here is how their programs start:

// Alice’s program // Bob’s program

#define LARGE 10485760 /* 10 MB */

char my_array[LARGE];

int main(int argc, char **argv) {

for (int i = 0; i < LARGE; i++)

my_array[i] = 0xff;

/* program continues ... */

}

#define LARGE 10485760 /* 10 MB */

char my_array[LARGE] = {0xff};

int main(int argc, char **argv) {

/* program continues ... */

}

1. Assuming the remainders of the programs are identical, which program do you think will run faster?
Why? (3 pts)

2. Assuming the remainders of the programs are identical, after compiling and linking, which executable
will take up more space in the filesystem (or specify that they will take up approximately the same
space on the filesystem). Why? (3 pts)

3. Assuming the remainders of the programs are identical, which program will use more memory when
running (or specify that they will use the same amount of memory). Why? (3 pts)

4. After compiling and linking Alice’s program and running nm on the resulting binary, which section
will my array show up in? (3 pts)

5. After compiling and linking Bob’s program and running nm on the resulting binary, which section
will my array show up in? (3 pts)

6

Bob’s because it avoids the initialization loop

Bob’s will use around 10MB more since the array must be included
in .data section

Same amount, both have the 10 mb array in memory while executing

.bss
0000000000004040 B my_array

.data
0000000000004020 D my_array

CS 3214 Midterm Fall 2023

6. Suppose Bob adds the keyword const to the definition of my array so the line now reads const char

my array[LARGE] = 0xff;. Which section will my array show up in now? (2 pts)

6 Threaded!

A CS3214 student missed a few classes and thinks that processes and threads are “basically two words
for the same thing, dude”. The student was instructed to write a program that uses two threads,
each of which increments a global shared counter 1000000 times. At the end, the main thread should
print the final value of the counter (which should be 2000000). The student wrote the following code:

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int global_shared;

static void thread1()

{

printf("thread1 working! \n ");

for (int i = 0; i < 1000000; i++) {

global_shared++;

}

printf("thread1 done! \n ");

exit(0);

}

static void thread2()

{

printf("thread2 working! \n ");

for (int i = 0; i < 1000000; i++) {

global_shared++;

}

printf("thread2 done! \n ");

exit(0);

}

int main()

{

/* start two children */

if (!fork())

thread1(); /* child */

if (!fork())

thread2(); /* child */

7

.rodata
0000000000002020 R my_array

CS 3214 Midterm Fall 2023

/* wait for them to finish */

wait(NULL);

wait(NULL);

printf("global_shared = %d \n " , global_shared);

return 0;

}

(a) Does this program use multiple processes or multiple threads in a single process? (3 pts)

(b) What possible values will be output for global shared? Why? (5 pts)

(c) Suppose the student introduced a mutex and calls to pthread mutex lock() and

pthread mutex unlock() to protect all accesses to global shared. Would this fix the program?
Why? (5 pts)

(d) Without changing the use of fork(), what is a way to ensure that each thread’s work is accu-
rately communicated and reflected in global shared()? (4 pts)

7 Sema Down!

Consider the following program that we discussed in the class. One thread flips a coin, and shares the
result with the other. For this question, you can assume that the printf command runs atomically.

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int coin_flip;

static void * thread1(void *_) {

8

Multiple processes

Only 0. The global shared variable is actually private not shared because
fork made a new process

No, in that case the mutex also would not be shared because the processes have their
own copies of the address space and copies of the mutex

One method is to use pipes for IPC, other IPC mechanisms also work

CS 3214 Midterm Fall 2023

coin_flip = rand() % 2;

printf("T1: %d " , coin_flip);

return NULL;

}

static void * thread2(void *_) {

printf("T2: %d " , coin_flip);

return NULL;

}

int main() {

const int N = 2;

pthread_t t[N];

srand(getpid());

pthread_create(&t[0], NULL, thread1, NULL);

pthread_create(&t[1], NULL, thread2, NULL);

for (int i = 0; i < N; i++)

pthread_join(t[i], NULL);

printf(" \n ");

return 0;

}

(a) What is the output when the program is run? (3 pts)

(b) Is the program deterministic? In a short sentence explain why? (3 pts)

(c) In a class demo, we ran this program 100 times and received the same output everytime. Does
this mean the program always produces correct output? (4 pts)

(d) The program is modified such that thread2 is created before thread1. Will this ensure correct

9

T1: 0 T2: 0 - Thread 1 runs first, sets coin_flip to 0, then Thread 2 reads and prints the same value
T1: 1 T2: 1 - Thread 1 runs first, sets coin_flip to 1, then Thread 2 reads and prints the same value
T2: 0 T1: 0 - Thread 2 runs first (reads uninitialized coin_flip which is 0), then Thread 1 randomly sets and prints 0
T2: 0 T1: 1 - Thread 2 runs first (reads uninitialized coin_flip which is 0), then Thread 1 randomly sets and prints 1

No the threads can run in any order, providing different output in a non
deterministic manner

Nope, just because we observed correct output x number of times doesn’t mean an incorrect
output can’t be observed if the program is non deterministic

Nope, thread synchronization will

CS 3214 Midterm Fall 2023

execution? (3 pts)

8 A Choice was made!

Recall the definition of the fuctions:
int dup(int oldfd)
int dup2(int oldfd, int newfd)

Consider the following code:

int main() {

int fd[2];

for (int c = 0; c < 2; c++) {

fd[i] = dup(0);

}

dup2(1, fd[0]);

dup2(fd[0], fd[1])

dup2(2, fd[0]);

write(fd[1], "CS3214 \n " , 7);

}

Where is CS3214 printed when the following program is run?

Circle one of the following choices: (3 pts)

A STDIN

B STDOUT

C STDERR

D Not printed

10

STDOUT

