
Personal Web and Video Server
CS 3214: Project 4

Help Session: Thursday April 18th, 2024 - 7:00pm EST
Anthony Nguyen (anthonyn33@vt.edu)

Brendan Doney (brendandoney@vt.edu)

mailto:anthonyn33@vt.edu
mailto:brendandoney@vt.edu

Topics
● Overview of a Web Server (prerequisite knowledge)
○ OSI, TCP, HTTP, JSON, JWT

● Basics / Getting Started
● Web Server Design
○ Serving Files
○ Authentication
○ Robustness, Performance, & Scalability
○ IPv6
○ MP4 Streaming

● Logistics and Grading
● Fuzzing!
● Disdoc (SystemsGPT?!)

Overview of Web Server

Prerequisite Knowledge:
OSI, TCP, HTTP, JSON, JWT

● Network “Stack”

OSI Model

● Slightly more modern approach

OSI Model

(your server is here)

Socket Programming
● Medium through which programs access network
● System calls:

○ socket(): create the socket file descriptor
○ bind(): assign to (local) address and port
○ listen(): start queueing incoming requests
○ accept(): connect to a client, return new socket

All sockets by default are blocking

● Hypertext Transfer Protocol
● Exists in the application layer of the OSI model
○ Normally takes place over TCP/IP connections

● Developed at CERN in 1989 and governed by W3C (World
Wide Web Consortium)

● Request and Response messages use verbiage to denote
intent
○ GET, POST, PUT, DELETE
○ Stateless

HTTP

HTTP Requests
Version 1.1 requests are structured as follows:

POST /index.html HTTP/1.1
Host: localhost:12345
User-Agent: curl/7.81.0
Accept: text/html
Content-Type: application/json
Content-Length: 67

<67 bytes of data>

<method> <target> <version>

<header name>: <header value>

<blank line: CRLF> ("\r\n")
<message body>

HTTP Responses
Version 1.1 responses are structured as follows:

HTTP/1.1 200 OK
Accept-Ranges: bytes
Server: CS3214-Personal-Server
Content-Type: text/html
Content-Encoding: UTF-8
Content-Length: 3968

<contents of index.html>

<version> <response code>

<header name>: <header value>

<blank line: CRLF> ("\r\n")
<message body>

● Each line ends in:
○ CR: carriage return, \r
○ LF: line feed, \n

● Has version and status
● Optional header fields
● Blank CRLF, then message content (if any)
● HTTP status codes

HTTP Standard

JSON
Key, value store in a well-defined format

{
 "a": "Example text",
 "b": 0,
 "c": [1, 2, 3, 4],
 "d": {
 "a": [],
 "b": "Hello world"
 }
}

“Javascript Object Notation”

● JSON Web Tokens are an open, industry
standard RFC 7519 method for representing claims
securely between two parties

● Debugged on main website: https://jwt.io
● Three parts:

○ Header
○ Payload
○ Signature

JSON Web Tokens

https://tools.ietf.org/html/rfc7519
https://jwt.io/

Encoded JWT token is delimited by dots

Example JWT

eyJ0eXAiOiJKV1QiLCJhbGciOi
JIUzI1NiJ9.eyJleHAiOjE2OTc
yNzE2MDAsImlhdCI6MTY5NzE4N
TIwMCwic3ViIjoidXNlcjIwMjM
ifQ.qtaLIlrQ23PemNtCeEMOla
P3vaWtfXbYJQfWEzbPy30

{
 "typ": "JWT",
 "alg": "HS256"
}
{
 "exp": 1697271600,
 "iat": 1697185200,
 "sub": "user2023"
}
HMACSHA256 signature

You’ll
see this
later!

Basics / Getting Started

● Fork / clone the repo
○ Set to private!

● Use the provided./install-dependencies.sh to set
up the project libraries

● Build the Svelte frontend & add some videos
○ Make sure npm and node are ones in ~cs3214/bin!

Getting Started

$ git clone <your fork of cs3214-staff/pserv.git>
$ cd pserv && ./install-dependencies.sh
$ cd svelte-app && npm install && npm run build
$ cd ../tests && ./build.sh
$ cd ../src && make

https://kit.svelte.dev/
https://git.cs.vt.edu/cs3214-staff/pserv.git

● Understand the code
○ The front-end (Svlete App), files, etc. is handled for you

● What do we write?
○Any files you like, modifying http.c heavily
○ Hint: You’re only messing with 4 files! ✨

● Handle
○ Authentication
○ IPv4 and IPv6 dual support
○ HTML5 Fallback
○ Multi-client support
○ MP4 streaming

Getting Started

● Base code already supports:
○ HTTP request parsing,
○ HTTP response building,
○ File mime-type guessing,
○ Serving one client at a time.

Alright, then where do I start?
● Get a feel for static file serving first (GET request

to /something.txt).
● Start with minimum requirements (200 OK response to GET
/api/login, multiple simultaneous connections) .

● Move to IPv6 support, then authentication functionality.

Provided Base Code

● Base code parses request headers into structs (think
Project 1)

● The information is inside a buffer (struct bufio)
● http_process_headers processes it and stores important

info in struct http_transaction
● You should store extra information such as:

○ Authentication token
○ Request range
○ Content Type

● Store as an offset or value? Up to you!

HTTP Transaction Struct

● Already supported for you!
● Supports the following program arguments:

○ -p <port number> defines the port to bind()
○ -R <path> defines the server root to use
○ -a enables HTML5 fallback

(... plus a few more!)

Parsing Arguments

● Use SSH tunneling

On local machine:

(if connecting to a specific host, use <host>.rlogin in place of localhost)

On rlogin, start server normally:

Open browser to localhost:<port>

Testing in browser

$ ssh –L <port>:localhost:<port> <pid>@rlogin.cs.vt.edu

$./server –p <port> -R <root data dir>

Demo
Getting started
Common pitfalls

Web Server Design

Authentication & Higher-Level Design (and curl)

● Serve any file in the root directory
○ Be mindful of security vulnerabilities in the provided path

(what about ‘.’ and ‘..’?)

Serving Static Files
GET /hello.txt

Hello world!

GET /../../private/passwords.txt

Client asks for the
contents of hello.txt

Server opens hello.txt
and responds with its
contents and type.

text/plain

Authentication
POST /api/login

GET /private/secure.txt

{"exp":1697271600,"iat":1697185200,"sub":"user2023"}

This file is secure!

Client supplies
correct login
information

Server returns
authentication
token

Client supplies
token in a cookie

Server looks at
cookie, verifies the
token, and provides
the private file

application/json

text/plain

● Only need to handle a single user:

● Hardwiring credentials in source code is often bad practice.
● Hard-coding will not pass testing!
● The autograder supplies environment variables:
○ USER_NAME
○ USER_PASS
○ SECRET

● Use env to supply these to the unit tests.

Auth. Credentials

{"username":“<USER_NAME>","password":“<USER_PASS>"}

< HTTP/1.1 200 OK
< Server: CS3214-Personal-Server
< Content-Length: 21
< Content-Type: text/plain
<
This file is secure!

Secure File Auth.
Checking for the presence of a cookie in the HTTP header

> GET /private/secure.txt HTTP/1.1
> User-Agent: curl/7.81.0
> Host: localhost:12345
> Accept: */*
> Cookie: auth_jwt_token=<encrypted token>

Client asks for secure file

To show the server it can
be trusted, it sends an
auth token in a cookie

Server checks the token
to see that the client was
previously authenticated

Server puts the contents
of the secure file in its
response message

● Should a request be sent on every click?
○ “Client-side routing” - updates via JS code

● Clients can change URL in the address bar
○ What if the “fake” URL is bookmarked?

● Policy for a Svelte application (request → fallback):

HTML5 Fallback

1.Existing file/API → as is
2. / (server root) → index.html
3. /some/path → /some/path.html
4. else: 200.html

https://kit.svelte.dev/

● Debugging tool for HTTP requests
● Arguments include urls to query and flags
○ Great way to see the request and response

flow between a client and server
○ Helps debug hanging and malformed headers
○ Can chain URLs together

● Flags:
○ -v: verbose mode
○ -0 / --http1.0: use HTTP 1.0
○ --path-as-is: do not truncate dot dot sequences

Quick Sidenote: curl

curl Examples
Send a POST request with body

View headers

Manually set session cookies

$ curl -X POST -d \
'{"username":"user2023","password":"passwordf23"}' \
localhost:12345/api/login

$ curl -I localhost:12345/private/secure.txt

$ curl -v --cookie "auth_jwt_token=token" \
localhost:12345/private/secure.txt

Demo
Talking to a server using curl

Web Server Design

Robustness, Performance, & Scalability

● Client threads:
○ Should not bring down / block the whole server

● Ideal case:
○ All threads are doing productive work all the time, like in

a threadpool
○ Must be mindful of latency

● Be mindful of return values!

Multithreaded Servers

● Look for inspiration in literature and other
server implementations, like NGINX and Apache

● Suggestions:
○ Repurpose threadpool
○ Epoll set
○ Thread-per-client-connection

● Be mindful of the underlying hardware
● Web servers can be “embarrassingly” parallel

because HTTP is stateless
● DO NOT write a forking/process-based server.

Spawning Threads

●Asynchronous event listener
handling accept() and recv()

● Threads execute an event loop where they
call epoll_wait()
○ Kernel returns an array of ready file descriptors
○ Thread is responsible for cleaning up dead connections

(and freeing related memory)
○ For best performance, vary number of threads and max

size of event array

EPoll

Web Server Design

IPv6 and Version Conformance

● IPv4
○ Looks like: 192.168.1.30

● IPv6
○ Looks like: 2001:db8:85a3::8a2e:370:7334

● Study the differences between network structures
and attributes

● Server must support both IPv4 and IPv6 connections
○ Rlogin supports dual-binding

IPv4 versus IPv6

● Persistent connections:
○ HTTP 1.1 by default keeps the connection alive
○ HTTP 1.0 by default closes the connection
○ The connection header is respected

● Additional status states added
● Host header not required for HTTP 1.0, but required

for HTTP 1.1

Version Differences

Web Server Design

MP4 Streaming

● Your server will support the /api/video endpoint.
○ Upon GET request, send back a JSON array of videos.

SERVERCLIENT

Video API Endpoint

[
 {
 “size”: 12345678,
 “name”: “video1.mp4”
 },

 {
 “size”: 24681012,
 “name”: “video2.mp4”
 },

]

GET /api/video HTTP/1.1
...

CLIENT SERVER

Range Requests

GET /video1.mp4 HTTP/1.1
Range: bytes=42-31415

HTTP/1.1 206 PARTIAL CONTENT
Content-Range: bytes
 42-31415/1234567
...
<bytes>

● Your server will send the Accept-Ranges header
and accept Range headers sent by clients.
○ Range header means: “give me bytes A-B of this file”

● The server responds with a 206 PARTIAL CONTENT status
code and a Content-Range header.

Project Logistics

Grading and Advice

● The usual: gdb, strace, etc.
● Use curl to simulate interactions
○ HTTPie
○ Postman

● Hexdump function (hexdump.c)
● Fuzzing utilities

Very relevant skills for life outside of CS 3214

Debugging

https://github.com/jakubroztocil/httpie

Start Early! Due date: May 1th
Hard due date: May 2th

● Please submit code that compiles
● Test using the driver before submitting!
○ Run the tests individually when debugging
○ Run them all at once to see how you’ll be graded

● “Passing” a test means that you get the correct
result without crashing, within the time limit
○ A failing test can crash the rest of its section!

● Full scores required on some sections for others to run:
○ Minimum → auth/extra → malicious → benchmarks

● Benchmarks will be run after the deadline
● Benchmarked scores will be the median of 3 runs,

assuming you pass all of them

Logistics

● Grade breakdown (125 points total):
○ 95 points via server_unit_test_pserv.py
■ 25 points Minimum Requirements
■ 20 points Authentication Functionality
■ 5 points HTML5 Fallback
■ 10 points Video Streaming
■ 5 points IPv6 Support
■ 15 points Extra Tests
■ 15 points Robustness (malicious tests)

○ 20 points via server_bench.py (5 tests × 4 points)
○ 10 points via documentation & version control

● 15 extra-credit points via fuzz-pserv.py
● 10 extra-credit points via superb performance (e.g. EPoll)

Logistics: Test Points

Scoreboard
Just like projects 2 and 3, you can submit your performance
results to the scoreboard.

See the course website for detailed rules and instructions.

Great way to see how well your server is doing.

~cs3214/bin/sspostresult.py

https://courses.cs.vt.edu/cs3214/fall2023/projects/project4

I think this should be a fun
project and you'll learn
something new, even if

you're already an
experienced web

programmer.

– Dr. Back

Concepts
● Read the project spec (Take notes!)
● Understand the starter code (Write comments! Look

up system calls!)

Implementation
● Start with serving static files
● Move to authentication (/api/login)
● Move to serving /api/video and Range requests
● Save performance for last (easier debugging)

Where to start

The Project Home Page
Socket Programming
● socket() man page
● bind() man page
● listen() man page
● accept() man page
HTTP
● Mozilla Documentation - Message Formats

Helpful Links

https://courses.cs.vt.edu/cs3214/spring2023/projects/project4
https://linux.die.net/man/2/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/2/listen
https://linux.die.net/man/2/accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Fuzzing

(Not required, but fun 🙂)

What is Fuzzing?
Fuzzing is a software security testing technique: give a
program some unexpected input, with the intention of
crashing it or altering its behavior.

It’s a great way to find bugs and security vulnerabilities in
our programs. Bugs in web servers are dangerous!

AFL++ is a source-code-guided fuzzer that can efficiently find
bugs in C programs.
● Originally only works with programs reading

from STDIN/files. It runs forever until stopped, getting
smarter as it goes.

● We’ve created a library to allow it to work with
network sockets, and a series of scripts for you to easily
“fuzz” your server.

AFL++ GitHub Repo
AFL++ Website

Enter AFL++

(“We” meaning Dr. Back and
Connor Shugg. This was part of
a VT CS research project for
Connor Shugg’s MS thesis.)

https://github.com/AFLplusplus/AFLplusplus
https://aflplus.plus/
https://vtechworks.lib.vt.edu/bitstream/handle/10919/110769/Shugg_CW_T_2022.pdf

Tools have been provided to enable the fuzzing of
your servers. Once you’ve got a functional server, give it a
whirl!
● Step 1: run ~cs3214/bin/fuzz-pserv.py

○ Let it run. See if it finds some issues!
● Step 2: output_dir/fuzz-rerun-gdb.sh
○ Run this with the “crash files” or “hang files”

discovered by the fuzzer to debug your issues.

(This is an excellent bug-finding and bug-
reproducing system!)

AFL++ and your server

Demo
Fuzzing a buggy server

Markdown Documentation (multiple locations):
● On the course site
● In the base code repo (check sfi/)

Fuzzing Documentation

https://courses.cs.vt.edu/cs3214/spring2023/sfi/overview
https://git.cs.vt.edu/cs3214-staff/pserv/-/blob/master/sfi/overview.md

Using the fuzzer allows you to earn extra credit - up to
extra points. You get more points the better your server
does while the fuzzer is attacking it:

● Stage 1: getting the fuzzer running. (+5)
● Stage 2: fuzzer finds zero bugs in 15 seconds. (+2)
● Stage 3: fuzzer finds zero bugs in 2 minutes. (+2)
● Stage 4: fuzzer finds zero bugs in 10 minutes. (+2)
● Stage 5: fuzzer finds zero bugs in 1 hour. (+4)

Fuzzing Extra Credit

Disdoc
Colin can finally rest…

Questions?
Thank you for attending!

